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§ 1. Object and Avms of the Paper.

THE usual solution for the extension and compression of elastic bars assumes that the
latter arve strained under a normal tension or pressure uniformly distributed across
the plane ends. In like manner the solution for torsion of such bars assumes that
the external forces which cause the torsion consist of a determinate system of
tangential stresses, acting across the plane ends.

In both cases the solution is such that the torsion and extension are transmitted
throughout the bar without clange of type. Such terminal conditions of stress,
however, do not usually occur in practice, and it accordingly becomes of considerable
interest to find out how the results obtained for such a theoretical system of loading
are modified, if at all, when we consider applied external stresses which give a closer
representation of every-day mechanical conditions.

The present paper is an attempt towards the solution of this problem in three
cases, which appear of especial practical interest.

The first case is that of a bar which is subjected to a determinate system of normal
radial pressures and of axial shears all over the curved surface, the radial pressures
being symmetrical about the mid-section and the shears having their sign changed.
Thus the cylinder is subjected to a total axial pull, due to the shears, and also to a
oiven transverse pressure. The plane ends arve free from stress, except for a self-
equilibrating system of radial shears, which will have little or no effect at points at
some distance from the ends.

A special case worked out is that where the normal pressure is zero throughout,
but a determinate axial shear, which has been taken constant, is made to act over
two equal rings on the surface of the cylinder.

This will give us valuable information about a system of stress which often occurs
in practice, in testing machines, for example, in which a specimen is pulled apart by
means of pressures applied to the inner rims of projecting collars (see fig. 1). The
shaded parts of the figure represent the ““grips,” and if S be the total pull applied,
this is transmitted to the test piece by means of pressure applied along CA, C'A.
Now consider the thinner cylinder in the middle ideally produced inside the thicker
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CIRCULAR CYLINDERS UNDER CERTAIN PRACTICAL SYSTEMS OF LOAD. 149

ends. It is in equilibrium under the stresses, radial and tangential, between the
inner core and the hollow eylinder produced by the revolution of ABDC.

Fig. 1.

e

' //////////%/

But what are these radial and tangential stresses? If we consider the equilibrium
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of the outer hollow cylinder only, we see that the resultant of the stresses across
AB, A'B" must exactly balance the pull S, however applied. The radial stress will
probably be small, as it has no external traction to balance, and the longitudinal
shears are therefore equivalent to S. Thus the thin cylinder inside is really
stretched, not by normal traction over the flat ends, but by longitudinal shears over
the curved surface, and a careful investigation will show that, in every practical case, -
extension is obtained by the application of an axial shear to the curved surface of the
cylinder, never of tractions to the flat ends. The general effects of such a distribution
appear, therefore, of great practical interest.

The second problem discussed is that ot a cylinder of moderate length, which is
compressed between two rough rigid planes in such a way that the terminal cross-
sections are constrained to remain plane, but are not allowed to expand, their
perimeter being kept fixed. By adding a suitable uniform distribution of pressure to
a load system of this type, we can obtain the solution for a cylinder constrained in
such a way that its ends expand by a definite amount. These two problems are of
importance with reference to the behaviour of a block of stone or masonry when
tested between millboard or metal planes, which practically hinder the block from
expanding, and when tested between sheets of lead, which, on the other hand, favour
the expansion of the block. The widely divergent results obtained for the strength
of the same material when tested by these two methods have troubled many
elasticians. UNWIN (¢ Testing of Materials of Construction’) is of opinion that the
results obtained when sheet lead is used are unreliable ; whereas Professor PERRY, in
his ¢ Applied Mechanics, states that the true strength of the material is the one
given by the lead experiments, and should be usually taken as half the published
strength.

Finally, the third problem treated is that of a cylinder subjected to transverse
shears over the parts of the curved surface near the ends, these shears being
equivalent to a torsion couple. This is really the analogue, tor torsion, of the first
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150 MR. L. N. G. FILON ON THE ELASTIC EQUILIBRIUM OF

problem for tension, and corresponds to the case of a bar  gripped” as explained
above, and twisted. This again is the method by which torsion is practically
produced in most cases—almost always in laboratory experiments.

§ 2. Method of Solution Adopted. Hustorical Refererces.

The method adopted has been to obtain symmetrical solutions of the equations ot

elasticity in cylindrical co-ordinates and to express the typical term in the form
Gkl X (),
7, ¢, z being the usual eylindrical co-ordinates.

The expressions for the strains and stresses, over any coaxial cylinder, are therefere
series of sines and cosines of multiples of z. The arbitrary constants of the coefficients
are determined by comparison with the coefficients of the Fouriir’'s series which
express the applied stresses at the external boundary.

This method is not a new one. It has been indicated by Lawié and Crareyrox
(““ Mémoire sur I'équilibre intérieur des corps solides homogenes,” * Crelle’s Journal,
vol. 7), but it has been for the first time worked out with any completeness by
Professor L. Pocnmammer (¢ Beitrag zur Theorie der Biegung des Kreiscylinders,”
“Crelle’s Journal,” vol. 81, 1876). Professor PocHHAMMER obtains the general
solution of the elastic equations for an infinite circular cylinder subject to any system
of surface loading, repeated at regular intervals. This he applies to the case of a
built-in beam. The solution is not restricted to be symmetrical about the axis of the
cylinder, but is perfectly general. The complete accurate expressions are, however,
quite unwieldy ; but, as the result of expanding the functions involved to the first
two or three terms, Professor PocHHAMMER obtains far more manageable expressions,
which he is eventually able to identify with those previously given by Navier and
DI SAINT VENANT for more special cases of loading. It is to be noted, however, that
PocamaMmEer restricts himself solely to the case of bending, and that his approxima-
tions depend upon the ratio of diameter to length being a small quantity.

The same general expressions have been independently arrived at by Mr. C. Carur
(“ The Equations of an Isotropic Elastic Solid in Polar and Cylindrical Co-ordinates,
their Solution and Application,” ‘Camb. Phil. Trans.,” vol. 14). Here, again, the
solutions are not restricted to be symmetrical. The symmetrical terms, however,
agree with the solutions of the present paper, but the latter are obtained by a process
slightly different from that of Mr. Curee. Mr. CHREE has also given a solution ot
the symmetrical case proceeding in powers of + and z.  Using each form of solution
endependently, it is not possible to satisfy the condition that there shall be no suess
at all on the curved surface; this is effected in the second problem of this paper, by
means of a combination of the two types of solution.

In the paper referred to, Mr. CHREE, like Professor PocamaMMER, has not, so far
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as I am aware, applied his general solution to the problems of tension and compression.
He does give one example of torsion, which he obtains by applying an arbitrary
system of cross-radial shears across the flat ends. Such a system, we have seen,
would not usually correspond to what occurs in practice.

Mr. CHREE has written several other papers (“ On some Compound Vibrating
Systems,” ¢ Camb. Phil. Trans.,’ vol. 15, Part 1L ; “ On Longitudinal Vibrations,”
‘Quarterly Journal of Mathematics,” 1889 ; ¢ Longitudinal Vibrations in Solid and
Hollow Cylinders,” < Phil. Mag.,” 1899 ; “ On Long Rotating Circular Cylinders,”
‘Camb. Phil. Soc. Proc.,” vol. 7, Part V1., &c.), which deal with the solutions of the
equations of elasticity in cylindrical co-ordinates, with special application to vibra-
tions and rotating shafts; but I cannot find that he has anywhere returned to the
statical problem and its solution by means of sine and cosine expansions.

[October 3, 1901.—Professor Schrirr (‘Journal de Liouville,” Série 3, vol. 9, 1883)
has attempted the solution of the problem of the cylinder compressed between
parallel planes, which is one of those treated of in the present paper. His solution
1s expressed in a series, not of circular functions, but of hyperbolic sines and cosines
of nz, the successive values of n being obtained as roots of a certain transcendental
equation. This enables him to satisty the conditions at the curved surface, but the
arbitrary coefficients are finally determined by the conditions over the plane ends.
He assumes both the radial shear and the molecular rotation in a diametral plane
to be given by known functions, f(#) and F(r), over the plane ends, and from these
he succeeds in obtaining the coefticients. As he has only a single set of the latter
left to carry out the identification, his functions f(») and F(r) are not really inde-
pendent. Theoretically only the shear f(+) should be required, and in a practical
problem even this is unknown, the total pressure being all that is given. The actual
distribution of this pressure does not appear to enter into Professor Scuirr’s solution.
Also the fact that the values of 7 are roots of a transcendental equation singularly
complicates the solution from a numerical point of view, and Professor ScHIrF appears
to have made no attempt to translate his results into numbers. |*

It has therefore appeared worth while to apply the solutions involving circular
functions of z to problems such as those sketched above.

Of each of these I have given a concrete numerical example. Indeed, the greater
part of the work has been spent on these numerical examples. The labour of calcu-
lation has in most cases been considerable, owing to the slow convergence of many of
the series involved, which has necessitated special methods of approximation.

* Bince writing the above, I find that the problem of the circular cylinder under a symmetrical strain
has been considered by J. THOMAR in two papers (< Uber eine einfache Aufgabe aus der Theorie der
Elasticitit,”  Leipzig Berichte,” vols. 37-38). The author has used expansions in sines and cosines of Iz
but, as far as I can make out, the only problem he considers is that of the vertical pillar under its own
weight.
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§ 8. General Solution for a Symmetrical Strain.

Let 1, ¢, z be the usual eylindrical co-ordinates ; also, following the notation of Top-
nuNter and Prarson’s ¢ History of Elasticity, let st denote the stress, parallel to ds,
across an element of surface perpendicular to d¢, s, ¢ standing for any two of the
letters », ¢, .

Let u, v, 1 denote the radial, cross-radial, and longitudinal displacements respec-
tively, then we have (Lams, ¢ Lecons sur I'Elasticité’), if' v, v, w are independent

of ¢ :
d?u d?u d*w

, dju
()x + ZP') di? + (}\ + 2M) clf(?) + o2 + 0\ + ,u) drdz 0 e (l)

d [Ld(re) ) dre.

dr \\ e odr d2? O (2)
d*u 1 de\ A2 1 dw AP
I - PR S D R, B
()\ + ’UJ) (\dﬂlz + P clz/ +w <(Z')‘9 L P clr) + (l\ + H’Ud) At o (3)
— ooy du u dw ——~ ( ,d,,?(’f (‘Zﬁu\ b
v (M A 2p) ot Mo Mg TR dr zlz)
o \ du N u N 9 f{fl(g —~ (Z'u
= + r + ( + M) dz =R dz 1‘& (4>’
~ % du dw dw D
pp= (Nt 20) N, AN b=, !

dr dz

A and p being the elastic constants of LamE.

We see from the above that (/]f)\é and 74 depend only on v, the other stresses only
on ¢ and w. Also the equation (2) contains v only, (1) and (3) contain v and w only.
The solution for transverse displacements is therefore absolutely independent of the
solution for radial and longitudinal displacements.

11 d 9 { . .
Let us now denote the operators ;T - ; 7 by 9%, and ;Z": by D. Differentiate (1)
rodr /2

with regard to z and (3) with regard to , and remember that the order of the symbols
D and $ is indifferent, then we tind

(P4+DYo=0. . . . . . . . (5)

. l . O (!I,U)‘
l o ! o\ duw .
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Eliminate either du/dz or dw/dr between (6) and (7): it is found that either of
these quantities satisfies the partial differential equation

(P+DYPy=0. . . . . . . . .. (8)

The whole problem of the determination of the elastical equilibrium of the circular
cylinder under any symmetrical system of stress depends therefore on the solution of
this differential equation.

§ 4. Solution of the Dyfferential Equation.

The differential equation
(¥ + D)y =0

is really identical with Larrack’s equation in cylindrical co-ordinates, namely,

1drdV | 1 &V | BV

rar ar Tap T T
Suppose V independent of ¢ and differentiate with regard to », we have
(9* 4+ D) dV/dr = 0.

If therefore V be such a solution of LAPLACE's equation, y = dV/dr will be a solution
of the given differential equation. For our purpose, however, it will be simpler to
proceed from the equation itself.
Assume a typical solution
n=2=R,. 2,

where R, is a function of » only, Z, a function of z only.
We find easily

a*R, 1 dR, 1 o

e T g T <7; + k> Ry=0 . . . . . . . (9,
Pl ‘
I S . (10).

The solutions of (9) are of the form

I (kr) and K, (kr),
where

» a2
L(x)= % gy ()L (s + n)°

K, (z) = (— 1)’ 1.3.2n—1) rcos(:csinhd)) db.

ar cosh® ¢

(See GrAY and Marnews, ¢ Bessel’'s Functions,’ pp. 66--7.)
VOL. CXCVIIL—A. X


http://rsta.royalsocietypublishing.org/

I\

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
\

Y
A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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Consider now the equation
(9* 4+ Dy = 0.
Let y, be any solution of the equation
(924 D)y = 0.
Then if y, be a solution of

(9 + D)y =y,
(9°+ D7)y =o.

it 1s also a solution of

Now if y, = R Z, what is the condition that we can obtain a second product solution

Yo = RyZy
We have, substituting

9 11)2
9 )”2 + DNZQ — 1&1. _’/_J:l
2, Z, T R, Z,

or function of 7 only + function of z only == product function in » and z.

(1),

If (11) is to be identically satisfied, this product function must be a function of #

only or of z only.
Case (1.). Z, = aZ, where a is a constant.

We find

9R, — ¥R, = R, .

(4
or, since R, is a solution of
(92— )R, = 0

which is the same as (9), R, is a solution of
(9* — )R, = 0,

which is not at the same time a solution of (13).
Now the solutions of this equation are

. d 7
L (kr), K, (k) (/]u L (kr), y K, (kr).

But
i . . 1.
L (k) = oL (k) = oL, () = T, (B),
and similarly
l 1
K (br) = vK, (kr) = K, (k).

The four independent integrals are therefore
I, (k), Ki(kr), oL k), +K,(kr),

and therefore the required values of R, are 71, 7K,

(12),

(13),
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Case (ii.). Ry, = bR,; we find, using (13),
=,

and therefore Z, is a solution of (D? + £*)* Z, = 0, which is not at the same time a

solution of

(D* + 1) Z, = 0.

The possible values of Z, are z cos kz, z sin k.
Hence the possible sets of product functions satisfying the equation

(¥ +D¥y=0
are as follows :— .
1 = Acos (kz + o) I, (kr)
Beos (kz + B) Ky (r) |
Ceos (kz -+ y) 1, (k) | (14)
D cos (kx + 8) 7K, (kr) '[ e
Tz cos (kz + €) 1, (kr)

Fz cos (kz + 0) K, (kr) \

|

§ 5. Solution under given conditions of Surface-loading ; the first problem.

Let us now consider first the case of a circular cylinder under the following system
of stress:

—~ .
rr/u = a given even function of z (= f(z) ) over the curved surface » = «,
— .
rz[/p = a given odd function of z (= s (z) ) over the curved surface » = «,
N
zz = 0 over the plane ends z = 4 ¢.

Since du/dz, dw/dr are both solutions of (8) we may have them composed of a series
of terms as follows :

dv _ E{Al cos (k2 4 o) I, (k) 4+ C, cos (kz + y,) L, (kr)

“’4 + Epzeos (kr + ) T, (kr) P (19)

w_ {Ag cos (k2 4 ay) I, (kr) + C, cos (k2 + y,) 7‘10(’”’)} .. (16).
dr + Eyzcos (kz + €) I, (kr)

No K-functions have been introduced in this case, as they lead to infinite terms at
the axis.
X 2
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Also the conditions of the problem require that w shall be an even function of z
and w an odd function of z. Hence

==y =y, = —a/2, 6 =6 =0,

Integrating (15) and (16) we have
=y (1) + z{ Veos e, (k) — | cos ke () 4 <,4 sin bz 4 9%’“) : (]cfr)} ,

w= 0(.)4—2{ Psin k21, (kr) + (ism/, rl (K})—l— ~,cos kz 1, (l))}

To find the relations between the constants we must substitute in equations (1) and
(3). We then find the following relations :

(@) =0. . . .(17) D =0. . . . (18),
(A= Ag) (M p) B2 4 28{C (M + 2p) — pBy — (- p) By =0 . (19),
(A= A) M+ ) B+ 20{C (N + ) + pCy = (N 2p) By} =0 . (20),

C,=C=C say . . . (21) B, =E =8 say . . .(22).

In virtue of equations (21) and (22), (19) and (20) reduce to the single equation

(A —A)AN+wEk+20+20)(C=E)y=0 . . . . . (23)
Also from (17) and (18)
x (r) = uyr, 0 (z) = wy,
remembering that w is odd in z and that « is not to be infinite when » = 0.

For the stresses 77, 2z, 7z we find from (4), after some obvious reductions,
=2 (N ) 2y + A,

+3 T L 3 A, A, (b cos
| 1, (Zr)

} -+ 2M{<A — j>~7~ cos kz 410z sin bz /I (hr) _h ](ji7q>>}—07111(kv7")cos Jz |
B . (24).

Z7 = 2Ny + (N 2p) w,

+in {()\"I‘Z,LL)A — \A, 2 +2()\+;L)}‘}Io(kr)coslczi (25)
; » . o . A.JL) .
~ 4+ 2u{CrL, (kr) cos kz — EI (kr) zsin kz} _

7= p2{(A, + Ay I, (kr) sinkz + 2CrL, (kr)sinkz 4 2EL; (kr)z cos kz} . . . (26).
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But clearly if 22 is to be zero all over the plane ends we must have

A+ 2u

Upg = — T Wy e e e (27),
<"@i1).11
k= 5 Ce e e (28),
and E=0 . . « « v (29)

The expressions for the displacements and stresses then reduce to the following,
writing k» = p for shortness :

kz
u::uno'-—-E{. (p)+7p1()}°°jt” Y )
. . C sin bz
?U:ZUOZ+2,{AZL)(p)—I-].—?pI](p)}s}l;‘?"‘ LBy,

= 2(N 4 p)u, + A,

C )
+3{ = S len 30 A+ el o) + 2| = P L (o) beosk . 32),

%:z{Ho [(3\ 4 4p2) Ay — MALTT, (p) + 20 7 o1, (p)}cosl L. (39),
~ 20 . ‘
q«zzpz{(Al+A2)Il(p)+—];plo(p)}smkz. A 7))
where

2C A :

== iji(Al—_Ag) . (35).

Over the surface of the cylinder » = «, we find

~ A+ 2
(e = = 3 o,

A= (L@ + (4L (aﬂ

4+ 3 . (36),
FAI—( =L@y ] |
— A, [[1(0‘) — yal, (“)] ]{ .
W), =S sinkz. . . . . . . (87),
k) { + AT, (#) + yal, ()]

. . At p
‘here 1 for — = and o for ka.
W v 18 written for A+ 2
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Now f(z) being an even function, we can expand it in a FOURIER'S series between

the limits 4 ¢ in the form

LT
2n 4 1oz

» ]
S () — flc) = %an cos " !
¢

| . (38),
L[+ ?:;——{-\lwz
where b= [ @ = F 0 o ™ e |

and ¥ (z) being an odd function can be expanded in the form

A ﬁlwz )‘
Y (z) =30,sin " 95 t ‘
' B L (39).
AT
cher Gy s I |
where b, = . !wcmp(@) sin dz |
Now since (ﬁ): = pf(2), (fz),.:,, = uis (2),

we have, comparing (36) and (37) with (38) and (39),

A (=1 AL + e 1)+ A1 = 7 1 () =yl () =

A (L (#) = yalo(2)) + A (T (@) + yaly (@) = D,

whence

A 1 Gl (@) 9T (@) + b (el () (= )l ()
! 2 717 () — (1 + ) [P ()

Al = 1 Gleh (@) = 72l () + b (A + P aly(0) = 2 + 7)1 («) (41)
2T ye’l? (2) — (1 + ya?) 12 (2) o ’

(40).

?Uo:_”z:y—:”'ff.(c)' Co e (42),

and therefore from (35) and (27)

O — (2n + ) gn“’)’vlrl («) + b, ('Y“I"(a) — vh(=)) (43)
ST R~ e P )

1 ‘ |
uO:Z(l«y;l)f(c) e (44),
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§6. Consideration of the Approximate Expressions to which the Results of the last
Section lead, when the Ratio of Diameter to Length is small.

If we can treat the diameter of the cylinder as small compared with its length, we
can obtain a first approximation by following the method of Professor PocHHAMMER
(‘ Crelle,” vol. 81), and expanding A,, A,, C in powers of «, which is then a small
quantity, provided the index n is not too large.* 1f we do this we find

2 ) —_
— gyt b2y
A=—a i+ 47_1’
20—1 b, 2y
Ay = " Ay 1+u4fy-—1’
C v b, y
ET Yy 1T a g — 1

and, expanding I(Ar) and I)(Ar) in powers of », and dropping all the terms except
the first (which is really equivalent to a second approximation, since the indices go
up two at a time), we find

4

24y — 1){f( )+ = <Ctu - % — b,t) cos /w,}

U =

%,'x,,v

= i {f<«>+fw—.<> Clveel,

using the Fourier expansions (38) and (39)

_ T 1.{( "o

4oy — 1 2p

f( 2)pea dz X 2#&}

Now j(o z)dz X 2mwa is equal to the total longitudinal pull exerted on the bar

r=a .
by all the forces on one side of the cross-section considered. 1t represents, in other
words, the total tension at that cross-section. Denoting it by ma®Q, where Q is the
mean tension at that cross-section,

— T A+ Zp A }
u—-’?‘{(ﬂ)r:,zx )/"(37\4“2/‘«) Qm SR (4?),

which shows that the radial displacement is exactly the same as if' the only forces on

. - . . o - . -
a thin lamina between two cross-sections were an external radial tension (r7)r
and a uniform tension Q across the plane faces.

* For the analytical restrictions necessary in such a case, see §28.
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In like manner it can be shown that

1 b, 2y )Sin kz

2y —
w=wz + 3 < 8 + by —1) T

Il

w

= L ORS KVC -f<c>>rcz»z}+ LRI

_ y—1 (”) =0 7 vy [Q .
= -yl eyl (16),
IR T N Q} )
—jo{ INF 2u u ‘+3x+’2;;;_d”
=rszdz

0

s, being the stretch parallel to the axis in a cylinder which is under a tension Q

across its plane faces and a radial tension (777\'),‘2[4.

Thus the longitudinal and radial displacements are, to a first approximation, the
same as if the cylinder were supposed made up of any number of thin circular
laminze, piled up on top of each other, the longitudinal tension in any lamina being
uniform and giving a total tension equal to the total pull of all the external forces
acting on the cylinder on one side of the section considered.

~~~
Further, the shearing stress »z at a point inside is found to the same approxima-
tion to be given by

/; bn . r . " r=a

g (kr) = sin bz = ' 3D, sin kz = T (1)

" a a [T

so that, in the parts of the cylinder to which external shearing stress is applied, and
in these only; there is shearing stress inside the cylinder, which shearing stress is
proportional to the distance from the axis.

—~ o~
The other stresses, 7, ¢, 2z, are found to the same approximation to be all
constants for any given value of z.

)

0,
= 2#2{5005107; =" Etp(A) =
= dp = pf(2).

It follows from the above that the action of any radial pressure will be purely local,
and also that, whatever the manner in which the cylinder is “ gripped ” and the pull
is applied, the stress in the portions of the bar between the points of application of
the pull reduces practically to a uniform tension.

The above results are somewhat remarkable as tending to show how very restricted
is the effect of local stresses, provided they leave no total resultant, and how, when
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they do leave a total resultant, the effect of this resultant is practically independent
of the manner in which it is applied. This is the celebrated “principle of the
equivalence of statically equipollent loads,” which was first enunciated by pm Sarxr-
VeNANT on general physical principles, and has been considerably confirmed by
BoussinesQ's researches on the effect of small local surface actions.

It is to be borne in mind, of course, that the solution obtained in § 5, although

making 22 = 0 over the flat ends, does not at the same time ensure 72 =0. In other
words, we have a determinate system of radial shears over the flat ends, but from
symmetry this system must be self-equilibrating. The disturbances due to it will
therefore, by the above principle, be purely local, and, provided we remove the ends
sufficiently far from the parts of the heam which we desire to study, no trouble need
arise on account of all the conditions not being strictly satisfied.

§7. Numerical Preblem. Fxpressions for Strains and Stresses.

Let us now return to the exact expressions and apply them to the case of a
comparatively short cylinder. .

: e - . e -

Suppose that == 0 all over the curved surface and that in some way, as deseribed

—_

in §1, a shear 7z, which we shall take uniform and equal to S, is made to act
along two rings upon the curved surface, so that

(rﬁz,.:t,,=0 when —b+e<z<b—e

2L —=b—e¢, z>b+4c¢
(7’:4 e = S when b;e3<z<7)+(e

(12),cg = == S when — b — e <z < —0 +e.
We have then
Uy = w, = 0,

a,

Il
>

The expressions for the constants, stresses, and displacements then reduce to

. Pt ‘/,/\~\A .
A] — 4§_~_ < 2/& + 1l7re € 2% + 1ard cy:chIol + (1 — fY)o.aIOo
: @2n+ 1) mu 2¢ 2¢ gl — (1 + ya2?) [P
48 I+ 1 17 (1 4 ) al, — (2 )
. 2n 4 . 20+ 1wh (1 + ) ad, — (2 + )
A, = gin “ T AT G 2 e e . (47).
2T @+ D 20 MM 20 gl — (L4 yad) 12 (47)
IR SN
¢c_ 45 sin 20 + lme . 20+ lab yal, — yL,
FT @4 Dot 20 P T a0 gl = (1 4 g I

VOL, CXCVTIL,—A. Y
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162 MR. I. N. G. FILON ON THE BLASTIC EQUILIBRIUM OF
- \:[ ]+')/A+(1—7/)A}](p)+2<\ gi,{)] o) cos kz
o2 P e J
b6 sy loy2C ]
B El_ 7 o (p) | cos kz
e N 20
—M.—m-z[ @y + 1) A= 2y — 1) A3 L (p) + 2 pl (p )]coszgz
: N - [ (48).
;f:}l[A -+ A,) I(p)J—H//pl (p)]%m/’
cos hz
u = (AI(,O)+ /ﬂukp)) |
sin iz
w= (AT )+ L))

Tn the above « is the argument of the I-functions, unless the argument is written.
To simplify the expressions we shall take 7o = 2¢, so that the length is about three
times the radius. This makes = 2n 4+ 1 (n=10,1,2, . . .). Further, suppose
e=¢/6, b = ¢/2, so that the cylinder is divided into 5 zones, as shown in fig. 2.

Fig. 2.
S
e R 3
1 T X T T -
1 H i H !
! ! X | H
: L a el
e - % el ole -
! v | |
; — - |
D L B
| ‘| ! i
i e ) |
! R !
5 ! | ;
i } R
e —
5 8

The middle one from —¢/3 to 4 ¢/3, unstressed ; two rings from ¢/3 to + 2¢/3
and —¢/3 to —2 ¢/3 over which a uniform shear is acting; finally, the outer rings
2 ¢/3 to ¢ and —2¢/3 to —¢, which are unstressed.  Also, in order to simplify
still more, we shall suppose Poisson’s ratio to have the value 1/4, or y = 2/3.

It may be objected, it is true, that in many actual materials PoissoN’s ratio is
not 1/4.  But this is not really an objection, because the object of this investigation
is not 8o much to find out the absolute values of strains and stresses in any given
material, as to caleulate the alterations in these values as deduced from the hypothesis
of uniform stress, and this we can best do by taking a value for PorssonN’s ratio
which is, on the whole, well within the limits indicated by practical results, and which
makes the arithmetic somewhat easier.

If we do this and calculate the values ot the constants, we find that for the first
10 terms they come to the following values :
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TasLi of Constants.

pr Ay par A, pwC

S 48 48k -
— 272602 + 205790 + 159464
-~ 142172 ~ 0359051 410354223
4+ 0323529 + 0163035 ~ 00534980
+ +00492450 4+ +00308747 ~ 000612345
~ +000534505 - +000374718 ++0000532623
- +0000285886 - +0000214593 + - 00000237642
~+00000413531 - 00000325082 ++000000294829
- 00000162159 - +00000131798 -+ +000000101204
+ 000000315996 + 000000263390 | -~ +0000000175353
4 +0000000448505 + +0000000381292 - +00000000224045

From these I have calculated the coefficients of the Fouriur's series for the
stresses and strains for » = 0, » = '2a, r = "da, and 7 = 6.
the convergence becomes slower and the expressions more difficult to handle.

For higher values of »
In the
case of the stresses and strains at the boundary = «, special methods of approxima-
tion have to be resorted to.

The expressions for the strains and stresses are :

w= 0] 00482 cos 7 4100380 cos = — 00230 cos ;
urt 2¢ 2¢ 2e o
(r = 20},
Tz 97z
— 00043 cos j’ + 00006 cos {— }
8Se | _ T ‘ 3arz , Dz -
= - — 01075 cos ; -4 ‘01412 cos - — '00541 cos - !
o 2 . 2¢. 2 :(,,. = 4a)
- Tz : Oz , 11z | ’
— 00130 cos " + "00023 cos 7 + 00002 cos " ... |
=3 01897 cos ™ 4 02014 cos T 00991 cos T
pr? 2 2¢ 2¢ ‘

2 |

Tz 97z . 11#77',,
— 00330 cos 5 00084 cos oy 4 00011 cos 2,
15

T ) Vimz
o 00002 cos o

!
|
197z |
~ "00001 cos =, 4. .. |

137z
+ 00004 cos »';70’ + +00005 cos

and in like manner for w and the stresses.
To save space, the coellicients of the serics may be exhibitod in tabulur form as
follows +—
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Cocflicient of |+ = 0.

ro= 0,

THE ROYAL
OF SOCIETY 4@&

PHILOSOPHICAL
TRANSACTIONS

cos wzf2e .
cos Swzf2e -
cos brz/2¢ .1+ - 02726
cos Twz/2¢ . + 00556
cos 9wz/2¢ . - 00070
cos 117z/2¢ .|~ +00004
cos 13mz/2¢ .~ 00001
cos 1Bwz/2¢ -
cos 17mzj2c .|

cos 197z/2¢ . j

03639

|
.!4-157104 +
|-

|

P

+ 62014 4 68364
-+ 01004 |+ 09557 |
+ 02810 + 00614
+ 01181 |+ 01457
- +00298 ' - -00692
~ 00036 - -00136
~ 00011 |~ -0006%
~ 00010 - -00089
4+ 00004

+

- 00058
+ 00001+ 00027 |

1411814
+ 10675
- +02700
~ 00431
+ 00048
+ 00003

e

o

++09721
- 11683
~ 04981

01547
- +00354
- +00040
00013
00011
- +00004

00001

107616
411921

* 0775‘L |
03650
101242
00209
- 00096
00119
00074
00033

b x w48
1 )
Coefficient of =0 = ("2)a o= (‘1) a. = ("6)a.

|

|
cos w7/2 411314 L1120 411218 +-11091
cos 3wz/2¢ + 10675 +:10998 1 411998 + + 13760
cos Brz/2e ~ 02700 ~02980 - -03927 ~ 05916
cos Tuz2e . ~+00431 ~+00528 |~ 00907 - +01922
cos 9mz/2¢ + 00048 ++00068 400159 + +00489
cos 11wz/2e. ++00003 400004 | 400015 + 00065
cos 13m2/2c. - ++00001 | 4 -00004 ++00025
cos 15mz/2c. — . ++00003 + 00026
cos 17mz/2e. - : ~ 00001 ~ 00014
cos 19mz/2¢. | - - +00006

Coeflicient of \! y =0,

w x pr?[85c¢,

t ro= (2w = () a = (6)

roe=(02) .

~~
1z X w48,

7= (4 a

ro=(6)u.

17}1IEI{()\(A\LJ?%\]\,

SOCIETY

OF

PHILOSOPHICAL
TRANSACTIONS

sinaz/2¢. . .| 4 20579
sin3wz/2¢ . .| — 01197
ginBmz/2¢ . .| + 00326
sinTrz/2e . .| 4 00044
gin 9wz/2¢ . .} - -00004

gin Llwz/2e .. -
sin 15wz/2e

sin 16wz/2e |
sin 17wz/20 ..
sin 197:/2¢ . . \

+21106 | 422712 4
~ 01085 |~ -00655
-+00352 | 400403+
“00058 | + 00103 | +
~ 00007 | ~-00019 | -
— -~ 00002 | -
- ~ 00001
—— -

..}..

25475 | + 05771
100418 | — 00944
00323 | + 01395
“00163 | + 00444
-00050 | — 00082
00007 | - +00007
*00003 | -~ 00002

- 00003 00001
00002
00001

R

*11909
00878
02861
*01219
00310
- 00037
- 00012
- +00010
+ 00004
- +00001

+ o+

+18801
*01915
+03b69
102464

- 00955

00171
-00081

-~ 00104
- - 00066
-+ 00030
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Using the above values I have calculated the stresses and strains for the points
r=0, a/5, 2a/3, 3a/5, and z= 4 (0, ¢/10, 2¢/10, &ec.). These are tabulated on
pp. 171-173.

§8. Calculation of the Stresses on the Outer Surfuce of the Cylinder.

Along the outer surface r» = a, p = a, and we have the following expressions for

—~ ~~
the stresses ¢¢) and 7z, and the displacements » and w: 7z and »r of course are
known.

~~

o~
Consider for example the stresses (#z)r—. and (¢ ) ..
They are

TN T T

_ 48 2 6yal? — (dy + 2) LI} — 2yel® . 2o+ dme . 2o+ 1md 20 + 1wz

= T sin sin - cos o
T (rwa — (1 + gD (20 + 1) 2¢ 2¢ 2¢

. (49),

and

Cy
A4S g 2yl 4+ AL = L =2 (1= y)ad? . Tu kb lme L Ja o Lmd S 4 L
- 0+ L 0 o, 2T AP Tt . ~
Ty (el — (LI @n+ 1) O e B g Oy,
| . (50).

Now, when a is fairly large (say > 10), I, and I} may be replaced by their semi-
convergent expansions :

1,/ 3 3.5 3.5.21 \
311(“>-«/é;;€ (1_8;—?2!(@0;) i@y

(see GrAay and Maruews, ‘ Bessel's Functions, p. 68).  From which we find that

e

V. 2 1
the coeﬁ1c1e11ts of cos == -;c

imate to the values (remembering = = 2n 4 1) :

in the expansions of g (fj)qﬁ )r— annd - 5 (Z/ ) -0 APProx-

5 S
4y -2 1 (2 —2y)By — 1) 1 . 2n 4 lare . 2n 4 lwd
{ v 1T o n + 1p[¥ g X ST
4 20—y 1 ). Zutime . Zn o lwb
and {:m T TR o } T VN
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Now let us write

byald = (g 4 DL = 2yelp 1 Sutdme 2t L
7“2102 - (1 -+ ')/069> Ilg ) (Zn + 1\ 8 .30 SH ‘)

4 2(1 —v) )n: lm . ﬁw + lqrb ,
- {2n+ 1 y (20 1)} sin = == s, g o (B,

dpal? 4 A0 =)L —2(L —q)alf 1 Su t lmwe . 9n 4 lub

«yagl — (1 4 o) 1,7 ) (21 4+ 1) S 2 St 2
dy—2 1 (2 —2)By—1) 1 } G dme . 2wk dmb
= { v i -+ . a1 1y sl 5, ST 4 p) . (52),
1 L
so that ]),, , ¢/ are comparable with the terms of the series % which converge

(20 + 1)
fairly rapidly. We see therefore that 7z and ¢¢ are made up of two kinds of terns

1

45
(@), terms of the form — Ep,,

o

2n 4+ 1mz
2¢

45 Zn+ 17z .
and — Zgn cos which are abso-

S

lutely and uniformly convergent series, and (b) series, in which the coeflicients ave
the approximate expressions found above. Of the series (0), those which have
terms containing 1/(2n 4 1) or 1/(2n + 1)% are absolutely and uniformly convergent.
This, however, is not the case with the series formed by taking the leading terms in
the approximation, viz. :—

4b°° 8 . (2 Dyme . (2 )b 2 1)z
g Gt Dae o (Gt Db (Gt D

» o E
w0 (20 + 1) S 2 9 90

and
i"é 4y — 2 sin 2+ 1) e <in Zn+ Lywd o8 (20 4‘- 1) ucs
m™ 0 'Y(?’I 1+ 1) 2¢ 2 ¢

For the series
5L Zuglme . Zutlmb Fu Im

3 sl SLIL CoS-
" (2n + 1) Ze 2 2¢

may be broken up into the sum of four other series, thus :

® 1 I + 1 . ® 1 271 + 1
1rs T —_— 0 s T L —
200 i )OS g, GmbE i s T ek b —o)
“ 2”17:\171' * 1 2n 4+ 1l
,l_ Y K > —— 1< — [ A— (2
* %(211 + (E4b+0) PR ) g (z=b—c¢)

Now it is easy to show that

N l /‘_ . |'| )
%() i ])C()b(ZIL + e =4 log<.cot 2',)

where || is the numerical value of .
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The series on the left is divergent and log (cot l%) = o if 2=0. We see,

=7
therefore, that, at the points z = 4-b + e, v.c., wherever the shear ™ changes dis-
continuously, the stresses 2 and ;S.(Z» become infinite.

The meaning of this in practice would be that, as the transition from the stressed
to the unstressed surface becomes more abrupt, the tractions in the neighbourhood
become dangerously large. And if the shear is applied by means of a projecting
rim or collar of material, on which the pull is brought to bear, as in fig. 1, then
this rim or collar must not project out of the material at a sharp angle, or in any
way which tends to introduce a discontinuous tangential stress over the surface
of the cylinder. This is already recognised in practice; test pieces, which are
thicker at the ends than in the middle, being made in such a way that the transi-
tion from the smaller to the larger diameter is gradual.

The series containing 1/(2n + 1)* can also be evaluated in finite terms :

TN TN TN
g 1 gt dme o Gnd b o2t dm
o (2n + 1) 2¢ ) 2 2e¢
. TN TN P
7 f L gp At dme o 2t dmb o 2t Dm
T 2] 2@+ 2 2, M Ty
m? ¢
= 168 I (72 )rad
=0fromz=—cto —b—c¢
w?
1'50(7; dbte)fromz= —b—ctoz=—=0b+e¢
e
o fromz=—0b+4+ctoz=0—r¢
o
-

]Gp(7)+e—-z)ﬁ?omz: hb—ectoz=b+c

0 fromz=0b+4ctoz =c.

Thus we have only to calculate p,’, ¢/ and to sum the corresponding series, the
rest of the expressions for the stresses being reducible to finite terms,
For y = 2/3, I find the values of p,/, ¢,/ to be given by :
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" pn’ oy

0 —+35130 - 01184
1 — 04818 —+05960
2 + +00838 401431
3 + 00217 + +004.36
4 — 00061 - 00135
5 — 00011 — -00025
6 — +00006 - +0001H
7 —+00010 —+00026
8 + +00008 + 00024
9 + 00006 + 00018

~~

N
from which the values of 2z, ¢¢ can be found when » =« They are tabulated,
with the other stresses, upon p. 171,

§9. Caleulation of the Displacements on the Outer Surface of the Cylinder.

In a precisely similar manner we find for the displacements

¢ ST TN
88¢ { | aly/T, — 1 }Sin Sy et A G

Uheog = — %31 — ——, 2 cos
(s p o el TAT2 — 1 — e NCESE 2e 2e

) . 1 . N . TN RS
@ﬁ% 1 —= gin2n + laesin 20 + 17wb cos 20 + 1oz

ey Y 2% % %
K0 an 1 1y
88 o+ 1
¢ , n -+ Loz -
= S,/ cos » Coe s (b))
where
] - —~
e (P el =1 N L 2nd e L 20 A h
T T T — ) o g 1S g ST
“and is of' the order 1/(2n + 1)
. S TN TN
(), = 905 (L el = el LTy o T e T b T e
Pt = Y (gt — (L + qad),D) 2+ 12 9. Sy, BT
, ST TN

_88¢z1 1 ain (2n + Dywe i 20 + 1wb . 20 + 1wz
T oYy (2n 4+ 1) 2¢ ’ 9, M 2¢

8S¢ 2 (1 — \? 1 . @n+ Dme . Co+ Dymd . 2n— Dymz
+ /,m?% .Y > (2n + 1) s 2c s 2 s 2c

88 S+ 1

I T , . 2n -+ 1wz
+ ;L;Tﬁwn Sin T L (),
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where
TN TN
s [+ y)alf — yal 2 — 211, 1 (1 — 7\? 1} ) 1 sin on + lare sin %E:}:_Lvrb
Y = 2l — (L + 9812y g n + 13 % 2

and is of order 1/(2n -4 1)

It so happens that in w the term of order 1/(2n 4 1) is evaluable in finite terms,
and I have included it.

It 1s easy to see that

TN

§ 1 @n 4+ Dae . (2n + l)wbsin 2n 4+ 1z

S (2n + 1) sin 5 = sin 2

73eb

{g—gﬁom z=—c¢toz= —0b-—e¢

3 o
= - {Zeb—é—(b—l—e—{—z)g}gﬁﬁ*om =—0b—ctoz=—0b+4e

T btetor=10
ig—iromz—.——)-{-c oZ=0—¢

{26b—~(b—l—()—-4}2}‘,)7fmm =b—ctoz=0+4c¢
‘3

“l—é;fromz-—b%—etoz:‘_}.c,

The leading series in w cannot, however, be evaluated so easily. Tt is seen to
depend upon the evaluation of the series

E* om?ﬁ_f_l_v’/ — § -log ( cot a:)

(2n + 1) 2
10g kcot \ { — cosec x dz.

As series of this kind are frequently turning up in investigations like the present,

TN
. L[ © 2 -
I have tabulated below the values of & | —— d.L and also of 2 sin 25 + 1o for values
2 Josin (2n + 1)

of = ranging from 0 to @/2 at intervals of /40. lntermedlate values are then
obtained by interpolation when required.

Tasre of f . P de = S(x).
0

in 2
v J(@). } . S(@). . Jx). . J(@).
! _ ‘ ~
/40 $039283 | 67/40 238572 11a/40 450873 167r/40 1690354
27 [40 ‘078648 | Tw/40 279605 127 /40 +496043 17x/40 743248
3[40 118174 |  8x/40 +321246 137/40 -542417 18x/40 798291
4 [40 167947 | 9w/40 363596 147 /40 590147 19m/40 855760
5[40 +198050 ‘ 107/40 406766 157 /40 1639400 207 /40 915963
1 |

YOL. CXCVIIL.—A, Z
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Tants of $8020H1e
of (204 1)
e
{40 16639 | G40 | 5TATS | 1lm/40 | 78536 | 167/40 | 89109
| 27w/40 97830 Tw/40 ~62754 ‘ 127/40 “81379 177/40 +90202
| 3mw/40 +36959 8w /40 67442 1371'/40 -83839 18740 -90978
47/40 44740 9m/40 *71602 | 14w/40 -85938 197/40 +01442
5[40 51513 107/40 -75288 15740 87690 2071'/40 +91596
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We have thus the means of evaluating all those parts of the expressions which
give rise to the most slowly convergent of the series employed.
Taking y = 2/3, the values found for u,, w,” are tabulated below :—

n. Uy W,

0 — 13933 + 03040
1 - 01331 - 00634
2 + +00192 + 00098
3 ++00043 +-00022
4 - +00011 — +00005
5 - 00002 - 00001
6 —~ 00001 ~ +00000
7 - +00001 - +00001
8 + +00001 + 00001
9 + +00001 + +00000

| |

Using these and the expressions given above for the finite terms, we can find the
values of the displacements on the outer surface of the cylinder.

§ 10. Numerical Values of the Stresses and Displacements.

The numerical values obtained in this way are tabulated below ; I have given the
stresses in the form of ratio (stress) /Q, where Q is the uniform tension which would
produce a pull equal to that due to the shear S.
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Q.
2. 7 =0 r=("2)a 5 r=("4)a r=("6)a = qa
0o . 22990 21985 18587 11786 -00000
¢/10 . 22600 21860 +19244 13540 -00000
2¢/10 . 20818 20842 20227 18098 00000
3¢/10 . 17064 17487 18746 21264 00000
4¢/10 . 10688 10931 12179 15054 00000
5¢/10 . -02697 02239 01531 00700 ~00000
6c/10 . 04561 - 05754 ~ 08614 — +13427 00000
Te/10 . 09035 - 10187 - 13595 - +18782 - 00000
8¢/10 . 08893 - 09947 - -12221 - 14045 00000
9¢/10 . 05430 - 05936 — 06827 - 06636 +00000
¢ 00000 00000 00000 00000 00000
bb/Q.
z 7 =0 r=(2)a r=("4)a r=("6)a =
0 . 22990 22924 22568 +21396 12363
¢/10 . 22600 122631 22618 22146 15364
2¢/10 . 20818 21209 21990 23357 22157
3:/10 . 17064 17486 18827 21854 42904
4¢/10 . 10688 +10865 +11808 14158 +256536
5¢'10 . 02697 02412 -02049 ~01498 00162
6¢/10 . 04561 - +05310 - 07023 - 10563 - *24868
7¢/10 . --09035 ~ 09706 —~ 11924 — 16352 -~ 41155
8¢/10 . - -08893 - 09653 — 11404 — 14443 — 18289
9¢/10 . 05430 ~+05836 - 06709 - 07983 ~ 07880
¢ -00000 00000 +00000 +00000 +00000
22/Q.
2. 7 = 0. r = ("2)n. = ("4)a = (6)a r o= a.
0 . 68906 ~71895 81048 *96162 1-11724
¢/10 67272 * 70006 78586 193696 1-16333
2¢/10 *63120 *65168 71983 85919 1-34405
3¢/10 58195 +59404 +63659 73710 2-02246
4¢/10 *53943 54503 +56451 61686 1-36800
5¢/10 50302 50502 +50829 50813 47865
6¢/10 45713 45662 44745 39955 — 40866
7¢/10 38411 38062 +35965 27810 - 1-055562
8¢/10 27795 27204 24438 15199 - 35747
9¢/10 14532 14077 12060 06040 — 13448
c . 00600 +00000 00000 -00000 00000

PHILOSOPHICAL
TRANSACTIONS



http://rsta.royalsocietypublishing.org/

THE ROYALA P! ‘H

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

OYA
soCiETy A

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

172 MR. L. N, G. FILON ON THE ELASTIC EQUILIBRIUM OF
12/Q.
2. r = 0. o= (2)a. o= (4) o, 7= (16) a. 7=

0o . 00000 00000 00000 00000 00000
¢/10 00000 02148 05127 - +08883 00000
2¢/10 . 00000 03347 08205 15547 00000
3¢/10 . 00000 03262 08123 16519 00006
4e/10 . 00000 02571 06262 13159 " 95493
5¢/10 . 00000 02495 05701 11897 95493
6¢/10 . 00000 03718 -08085 14879 95493
Te/10 . 00000 05812 -12259 20528 00000
8¢/10 . 00000 07753 15596 *23109 00000
9¢/10 . 00000 08891 16969 21918 00000
¢ 00000 109231 -17214 20992 00000

|

Tn the above tables it is to be remembered that 77, 2z, qS?ﬁ are all

-
of z; 72z 1s an odd function of z.

both = + e, while at the points » = @, z = -

The displacements « and w have been compared with the corresponding total

At the points » =a, z = 4- -

-
3y 3

4

B

even functions
N
and ¢ are

20 ~~ — )
., 2z and ¢ are both = — «.
)

elongation and lateral contraction w, and 1, of the same cylinder under a uniform
tension Q over its plane ends.

TasLr of Displacements.

wlwy.

2. r = 0. r = ("4)a. 7= (04) o= ("6)a. o=
0 . 00000 +00000 -00000 00000 -00000
¢/10 *05693 -06005 +06988 08685 10972
2¢/10 . 11132 +11693 13489 16752 22900
3c/10 . +16235 16949 +19259 23676 38253
4¢/10 . +21132 21915 24461 29489 59238
5¢/10 . 26013 26829 29467 34706 67152
6c/10 . - 30896 31741 34425 39538 68809
Te/10 . 35493 36360 35027 43724 57421
8c/10 . 39299 40162 42700 46684 51756
9¢/10 . 41809 42646 45002 48254 49715
c . 42684 43506 4b774 48725 49196
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/1.

2. 7= 0. o= ("2)a. = ("4)a. 7 = (6)a. o=
o . . .. 0000 0449 0375 1341 5789
10 . .. 0000 0388 0294 1120 5488
2¢/10 . . . 0000 0262 0170 0635 4578
3e/10 . . . 0000 0202 0284 0454 1847
4e/10 . . . +0000 . 0314 0856 1206 *3709
Bef10 . . . 0000 0575 1767 2731 4963
6e/10 . . . 0000 0838 "2569 4127 5861
Te/10 . . . 0000 10934 "2803 4466 5907
8¢/10 . . . 0000 0790 2313 -3535 3741
9c/10 . . . 0000 0446 1283 1880 | 1807
co.o . 0000 0000 0000 0000 0000

§ 11. Duscussion of the Results.

The numerical results tabulated above are illustrated by the curves contained in
Diagrams 1-6. Diagram | shows the radial shift, of course enormously exaggerated,
u, on the diagram being taken as numerically equal to 2/5ths of the radius of the
cylinder. For convenience in plotting, the horizontal and vertical scales are not
the same, thus a/5 and ¢/10 are represented by the same length on the diagram,
although their actual ratio is 4/m. The same arrangement has been adhered to in
Diagram 2. '

Diagram 1.—Distortion of a Cylinder extended by Shearing Stress applied to the Curved Surface
(Radial Shifts).

| /\ < | l' —
1 Vo
\\\ ! | \ j //E\~ : /
~ i ! ™
i |64 e !
\ | /_"—\\*________.—-—""———"T\_ ! //
~  ld T S e N _
. E\rj L g)l 44 o y |
s < =T Tt — [3)
_ I o T
N N 124 . NI :
| | |
He —-9|¢ —-8¢c —~7ici—blc —5Cc —4c +3c -2 —/lc O /2l 3cl <He S -6ie :"70 8ic 9C ¢
! | ! i
! i :
e Il | A
! 24 !
B I i
— | CoTTTT—— R el B ]
B 24 i F——
! '-\f‘ I — _’P’/
: ! 68 i
]
/ ! \V A, ! : T~

(1o = 2a/5 on the scale of the diagram.)
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From Diagram 1 we see at once that a discontinuous change in the slope of the
deformed outer surface of the cylinder occurs at the points z = 4 ¢/3, 4 2¢/3,
between which the uniform shearing stress is applied. Referring to equation (53)
we see that at those points du/dz changes abruptly by the value — 1 S/u, where
S is the abrupt increase in the shear. This result is exhibited in the curves referred
to, and we notice that the effect of shear, applied to the outer surface of a cylinder,

Diagram 2.—Distortion of the Cross-sections of a Cylinder under Shearing Stress applied to the
Curved Surface.

(wo = ¢/2 on the scale of the diagram.)

B J) I
S N I )
| || e
5. \\ | ﬁ" /
=C == 0=
N 7l |
Z=9¢ N e — g
Z=-8c[ S — g
— 6a
£7CR qay//;
\\\ /M/
7=-6C B 6
~+ | e
Z=-50 e SIS SRSy 5
T ‘40 \\ \3}1 4
Z=30T T . — 3 L
I e R N e tBa
Z=2C 2
Lt =) D
z=-I¢ ;
z=0

a -Ba 6a 4a La 0 -2a 4a -6a -‘8a a
1,2, 3, 4,5, 6,7, 8,9, 10 undistorted cross-sections.
la, 2a, 3a, 4a, ba, 6a, Ta, 8a, 9a, 104 distorted cross-sections.

&)
the greatest contraction throughout the cylinder occurs near the points z = + 2¢/3

and appears due to this effect.

is to depress that part of the surface towards which the shear is acting. In fact

Near the ends the cylinder broadens out again, as we should expect, though 1t is
to be noted that the distorted generators meet the plane ends obliquely, which
should not be the case if the condition of no stress over the plane ends were
accurately fulfilled. This we know is not so: there is a system of finite shear over

the plane ends, as is easily seen on referring to the table of 7% on p. 172, This
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system of shears is, however, self-equilibrating. The shear is zero at the centre and
at the circumference, and its greatest value does not exceed about 1/4 of the laterally
applied shear. Its effects, at some distance inside the cylinder, will therefore be
small compared with the effects of the large and unbalanced lateral distribution
of shear.

We notice that, for so short a bar, the lateral contraction is very much less than
the contraction we should expect according to the ¢ uniform tension” theory. In
fact it never amounts to 60 per cent. of that contraction. For points deeper in the
material, the contraction is much smaller than this. Thus, for » = (-2) @, the lateral
contraction is 22 per cent. and for » = (4) @ it is 9 per cent. of what it should be on
the “uniform tension” hypothesis. This seems due to the fact, in itself extremely
remarkable, that there are considerable radial and cross-radial tensions inside the
material. Indeed, referring to Diagram 3, we see that the radial tension amounts to

Diagram 3.—Showing Stress 77 for the Cylinder under a Shearing Pull.

30 T————CljFvé OF Frwher F=a.
—————— - " " n " = ’2&-
i = s " “ w " F=4a.
— oy —— " woon " r=64a.
\—B.\
. = T
2@+——: NI
o e 5 N \\ \
7 ‘Q{\\-
v \ \
.. \\1

10 - \

G \ , ,
3 o Lengths along\ Axis of |cybinder.
S /¢ 2 S 4 saqnN\ec ¢ 8 -9t Je
9 A\ /
\._ AN /'//
W A
.. \ \\ //"
\ NN rP~—"17 /
-/Q : =17
" \ //
\ ~\F‘-/‘, /.
\ /
N
N
--2Q .

about 1/5th of the mean tension Q which would give the same total pull, and which has
been consistently taken as the unit of comparison. These tensions are changed to
pressures after passing the ring of shear, which is in accordance with the general
compressive effect mentioned above.

It may be noticed that the shape of the successive curves on Diagram 3 suggests
that, as we approach the outer skin, the two bumps on either side of z = *5¢ would
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lead to infinities, or at all events, to discontinuities in the stress. In other words,
that, though we have chosen our constants so as to make (771),-, formally zero, yet
the limit of (7) as given by the series is not zero when s approaches @. This

would suggest that the series for 77, considered as a series of I-functions, behaves at
r = « in much the same way as a discontinuous Fourier series whose general term
is sin mz behaves at z = . In fact, if we differentiate 77 in the usual way with
regard to » and then put r = a, we get a divergent series.

It is easily seen, however, that no discontinuity really occurs except at the points

where the shear is applied discontinuously. The general term in 71 is of the form
(dropping irrelevant factors) :

e 1(7“[“11 () Lo(p) = pLy() L (p) (1= P)[Li(@) To(p) = Iy (=) T, (p)ﬂ
00s 2n + 1w J 1,(p) < f
ity | = P Beh() — e (o) 0
S yol (@) — (1 + o) I2() J

where u = ;Lc (z + b+ e).

Now, looking at the semi-convergent expansions for I, and I, we find, putting

I+ lord .
¢ — d =1 and p = a — 0 where § = jl}jﬂﬂ and d 1s small,
c

Iy(z — 9)

Ly(e — 0) B
I, () o

= - terms of order §/a® and higher terms in S/aJ ,

= e“al(l + 4 2)[1 + &

Lz=8) __ A 58 : o
and L) = € <]_ -+ % “,)i:l % 4+ higher telms] ,
where e = base of Napierian system of logarithms.

The coefficient of cos (212 4 1)u then reduces to the form

1 [, - 5 - , . 8 ) i
@t 1) l + Iy(e)I (2)e X o0 X € 5<]. - terms in - terms in —; + &e. - terms
.1
'yoc{* 111;4—...\/

/

|

’[ ~+ Ly(a) 1, (@) 85“‘5<1 + % i + termsin % and 55- + higher terms)}

4+ (1 — ) I, (o) Ty () {€78 ( terms of order 1,> - 2“ €° (a finite term)}

1 / . 9 R .
— ~1£P>- yo' 1, (o) {86“5 (terms of order 12> + j e (a finite term)}
\ a

= (a2 () = (1 ya) 12 (a)).
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Now, if we remember that ya’l?* (a) — (1 4 ya?)1*(«) is of order yal®(a), we see
. . TN
that the successive terms in the coeflicient of cos 2n-41u are of the orders

Se—? Oe—8 Oe~8 de™8 Se? Se—?

Qn+12°  (+1)° @+ @+ 1P’ e+ 1P 2+ 1)

respectively. Also in considering discontinuities, we need only consider the terms
towards infinity, for the terms at the beginning can introduce no discontinuity.
But clearly the series

e~? ST < o8 T
S 08 2u 1 S 008 2041
~ (.2” + 1)) + ’ + s

“(©@2n 4+ 1
are of the order d multiplied by a series, which is finite and continuous up to and
including the value @ = 0. They tend therefore to the limit 0 with o, and can
introduce no discontinuity in the stress.

The same will be seen to hold of the series

-8 P

B .
s, ;f— cos 2n—41u,  provided u = 0.

wd
- Qn+1) o

“e

The series under the sign of summation is divergent if d = 0. If, however, d is
small, but still finite, the series can be summed, and we have the expression equal to

wd

g (L2
A fe) ad | ¢
—LC 1 -— € 2

This tends to zero when d is small, provided

ad sl . d (;l

—_— Tt
1, log (I —e ), 7e, Elog“'é'c' tend to zero,

which is known to be the case. HHence this series again can never introduce a dis-
continuity in the stress. '
Now consider the series

- — ol —
IS Trg m—m -8 A ¢
s o + 1 cos 2n -+ lu = % Se~’cos 2n 4+ 1u.

This is not of the same form. The series under the 3 is sometimes oscillatory, and
sometimes divergent, but is never convergent, if d is put equal to zero,
VOTL, CXCVTIIT.——A, 2 A
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But 1if d be small but still finite, the series
wd Burd,
zm Ind S 26 — €2
Se€ e cos 2n 4 lu = (e T ) 008 v

1+ ¢t QE') — 26* (m’ cos ‘)w
As d approaches the limit 0, this series also approaches the limit 0. Ience,
a fortiort, this series multiplied by d approaches the limit 0, and the stress is con-
tinuous,

. . emd/2¢
This holds provided « 4 0.  But if «u = 0 the series in question = L i The
R 4 :
. e (7’"Z 2 . . . .
limit of oo 1 W hen d =0 1is — 4. But when d == absolute zero in the series
%670 cos 2n—|— 1u the series = 0 identically.

We have therefore in these cases a finite discontinuity in the stress. This takes
~~
place at the points v = 0, i.e., 2 = + b 4 ¢, where the shear 7z varies discontinuously.

At all other points r approaches the value zero continuously as we move up to the
outer surface of the cylinder.

Coming now to the distortion of the cross-sections, this is exhibited in Diagram 2.
The displacements are exaggerated, as in Diagram 1, w, being taken = {c. The
cross-sections become hollowed out in the middle, the greatest longitudinal extension
taking place at the sides: Another noticeable feature is that the cross-sections are
slightly curled round the rim, except over the part of the cylinder which is subjected

o~
to shear, where they slope up sharply. This follows from the fact that d% + SM = /ﬁ

Thus, where 72 = 0 and du/dz > 0 from Diagram 1, it follows that clw/dr < 0 or,

since dw/dr > 0 nearer the centre, a maximum value of w occurs at a comparatively -

~~

small distance inside the “ outer skin” of the cylinder. When, however, 1z increases
by S, we have seen that du/dz increases by — & S/u, hence dw/dr increases by §S/pu,
and is always positive at the outer surface. At the further end, where S ceases to

113

act, the reverse takes place.

It is now easy to understand why the tension is infinite at the inner end of the
shear ring and the pressure infinite at the outer. For if we take two parallel near
cross-sections, the one just inside the shear ring and the other just outside, the dis-
torted cross-sections remain sensibly parallel until we approach the outer surface,
when they diverge sharply, if’ near the inside boundary, and converge sharply if at
the outside boundary. In the one case we get an infinite extension, in the other an

— —
infinite compression. Hence we should expect the stresses 2z and ¢¢ to become

infinite at these points, and the stress w7 to vary mﬁmtelv rapidly-——and this, we
have seen, is what does actually occur.

Further, we see that if we measure the elongation of the outer skin as is done
with an extensometer, we shall always get too high a value for the extension.
Referving to the table on p. 172, we have the following table of the displacements
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Diagram 4.—Showing Stress b¢ for the Cylinder under Shearing Pull.
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measured by the extensometer, as compared with the displacements caleulated {rom
the ordinary theory, over the free length of the bar :—

Displacements. s=(De | 2= | 2= | c=(4He | 2= (D)
Actual . . . oL 10972 22900 38253 59238 67152
Caleulated . . . . . . +10000 20000 30000 1 40000 50000
Difference . . . . . . 100972 02900 082563 | +19238 17152
Percentage correction . . - 8-86 - 1266 ~-21-57 | -32:48 —- 2554

We see, therefore, that in such a case very large corrections have to be applied to
extensometer readings.

- ~ . -
Diagram 5.—Showing Stress zz for the Cylinder under Shearing Pull.
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Diagrams 3-6 give curves showing the variations of the stresses, with z, for the
values of 7 equal to 0, ('2) @, (*4) @, (*6) @, a. 1 have omitted the intermediate value
(8) @, because the series used converge in this case inconveniently slowly, and no
methods of approximation, such as were employed in the case » = @, are here avail-
able. Observation of the curves for the smaller values of 7 will, however, in most
cases suggest the process by which they are deformed continuously into the curve

Diagram 6.—Showing Stress 72 for the Cylinder under Shearing Pull.

| [P |
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l
0 ¢ 2c 3Cc 4c 5¢ 6C ¢ 8¢ 9C ¢
Lengths abong Axis of cybinder:

corresponding to » = a. In Diagram 3, of course, this is not obvious, but here, as has
been shown, discontinuous changes occur. In Diagram 6 it is also not quite clear
how the curve for 7 = ('6) @ becomes transformed into the rectangle corresponding
to r = «. The curve for r = (*6) & has, however, already developed a double hump,
and its righthandmost ordinate’s rate of increase is fast diminishing. This suggests
that the two humps will rise and approach each other, ultimately covering the
rectangle, whilst the two ¢ tails” will dwindle down to zero.
Remarks of a similar character apply to Diagram 5.
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§ 12, The Second Problem : Case of « Cylinder under Pressure whose linds aie
not allowed to ecxpand. (First Method of Constraint.)

Counsider a cylinder (fig. 3) subjected to the following system of load +—

(1.) There is no shear 72 along the curved surface = «.  Over two rings of
breadth ¢ ab the ends o rvadial pressure P s made o act, this pressure being so
adjusted that there is no radial shift at the points A, B, C, D ; the breadth ¢ being
i the limit to be made indetinitely small,

Fig. 3
lP \LP
C B St /? Eﬂ.-—ﬂ» A
' i
e e -2 & qu e *4;‘*3“
mEq | . 7
| 8 3
i i
1 ' 1
| : 1
i X I B

D TP TP

(2.) The plane ends AB, CD, are constrained to remain plane, and are subject to a
total normal pressure mwa?Q.

The above would fit the case of w cylinder compressed between two rigid planes,
into which shallow circular depressions had been cut, to fit the ends of the compressed
cylinder and prevent them from expanding.

If we return to the expressions for the stresses in the general case, (24), (25), (26),
and also to those for the displacements, we find that it w is to be constant for z = ¢

ke=mnm. . . . . . . . . . . . (b)),

C,=0,=0C
El Z Ez = I = 0
(A = A)yk420=0 . . . . . . . . . (d0)

N N [
Also this gives 7z = 0 over the plane ends, so that we may suppose our rigid con-
straining plane to be also smooth,
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The condition that there is to he no Shear over the curved surface now gives

20 al («
(A, +A9)+—ZTI]°((“>->=O N 18

writing & = ka, p = kr as before).
8 P
From (56) and (57)

|
‘> oo (58).
J

In what follows, the argument of the I-functions, when not written, will always be
assumed to be a.

We find
A -
R o (1))
=2 (A4 p)u, + Mo, 4 S ' cos kz . (59).
) ) |
' A '7) P P

Putting in this p = «

Q,U,(' v I — (1 + o) 12

(77) =2 (N4 p) u, + Moy +3 ol

coskz . . (60).

Now expand the given pressure in the form

f} N (1))

/

~~ / @ i
(rr),_.=P (aﬂ + = @, cos
1

Where ay, ), . . . @, . . . are determined, P remains a free constant.

We have at once, comparing coefficients,

2uC _ vl Pa
T oyl — (L g 12 (62)
2N+ )y + Ny =Pa, . . . . L. (63).
Next we have v = 0 when r = ¢, 2 = ¢
. 1\ C (al, , 1 ¢ .
) = uOCL — 24 (— [) <“" ]le {Ilg -+ f}/—} Il + /[TN’ OCI-U>
7/(0(1/ == e PC . . . . . . . B . . (64),

wher g el (=) )
where 5_%2,Lc£:ry33~(1+«yx)l~ S (6
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This condition gives u, in terms of P, and hence by (63)

§>........(66).

)\wo-_:P((zO-l— 2 (N4 p)

We have now to find such a value for P that the mean pressure on the plane
ends is Q.

@ o~
— 7a®Q) = 2 [ rezdr
0

= 0’ (2)\%0 + ()\ + 2!’«) wo)

" 20 [«
T 2 = ) [ 4z,
/ BN 0

/

0
+ 273 cos
1
whenee, applying the well-known theorem,

d .
o (@, (2) = T, (=),
we have
— 70*Q = wa® (2\u, + (N + 2u) w,)
®, s 207 «l 1,
+ 27 cos 7 { [(x + 2u) Ay — NA, — ) /]“]‘ + 2uC “/}
Using the relation

2
L+ Ti—T,=0 . . . . . . . . .(67),

and putting in for A, A, their values in terms of C, we find that the terms under
the 3 vanish identically. Hence

Q= — (2\uy + (A + 2) w,)
N2 2
=P <- ,ﬁ_ix.,,/% ty — f(s)\ + 2u) ’;) ... (68).

. - . . .
Now suppose the distribution of stress is such that 7 = 0 from z = — (¢ — e) to

—~
r=4(c—e)and 7= =P from 2= —¢ to » = — (c —¢), and fromz=1¢c — ¢
toz = ¢, we find

2(— 1)y . nmre
My = —efc a,=— "' ) SIN s
nm I
whence 4
sin "
® o ¢ aI]fz
(== =3 -y Cowrs o o .. (69).
T H T yatl - (1 + rya ) Il“

When « is at all large, the terms of { are comparable with those of the series

sin "
¢ § ¢
py 1t
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which 1s equal to

...~log(2sn —2~)—|—(mh‘)cot dw? oo (70).

WQ/W Yo

(70) will give the approximate value of { whenever wa/c is at all large. If o = 2¢,
this method of approximation will already be quite fair.

We see therefore that if e tends to zero, { also tends to zero, but {/e tends to
become logarithmically infinite.

Now from (68) .
— M,

O + 2u)a, + %gi: (3N + 2u)

Pa, =

-\ .
vt 2 - -~—(\C>(3x+2ﬂ)

Hence, since — {/e tends to « when ¢ tends to zero, Pa, tends to zero when e
tends to zero.

And similarly, for any finite value of n, Pa, tends to zero when e tends to zero.

But if we write down the expressions for the stresses, they are :

- - P y aI 5‘) / al nmwe
w=—=Q43 s‘ o212 _r(yl +<fya.°)1 [ L(p) + 1y (p) (\2 — ‘[fﬂ cos—

~ P ((/,,'ya,Il 5‘}0
ry = Pao + 2 7“9102 _ (1 + ,.ya,‘l) I12 [< Il + 1

\
—~ Payel),  [/aly | I\Li(p) (1 oy
¢ = Pa, + % y21 — (1 + ya?) I 2 [( 1, -+ /\' <,y 1/ L (P)jl cos

)

P
~ Payyal, aly o T e
= 2l’)’oc‘I P (14 qya?) 12 [pIO () = L L (P)J S

[\3

Now the above series are absolutely convergent for all values of  except » = «,
where indeed they are discontinuous. Leaving the neighbourhood of » = @ out of
account, we see that for points inside the material, when the space over which the
constraining pressure acts is indefinitely reduced, LPa, = 0 and

——Q
= p =0;

therefore outside the rim, where plastic deformation may be expected to occur, the

3) )
I

stresses are exactly the same as on the ordinary hypothesis
We come then to the conclusion that this method of preventing the ends from
VOL. CXCVIIL.—A. 2B
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expanding is not adequate, and that to obtain any real effect, we require to make
the constraining rim of a certain definite thickness.

In so doing, we are really introducing an additional condition, besides the non-
expansion of the ends, the cylinder being now, as it were, built-in.  The problem as
it stands did not appear of sufficient interest to warrant the expenditure of arith-
metical labour upon it, so I have contented myself with stating the algebraical
results.

§ 18. The Second Problem : Constraint effected by Shear over the Terminal
Cross-sections,  Determination of the Constants.

Suppose now that we consider our cylinder subject to the following conditions +—
(i.) A total pressure 7wa® Q over the plane ends, the distribution of this pressure
being unknown. '
(ii.) The ends constrained to remain plane, so that w == const. when z = 4 ¢.
(iii.) The ends not to expand along the perimeter

=0 when » =a, z = +c.

° .. . . ° [} .
This condition is satisfied by allowing a shear 72 over the plane ends, its
distribution being, however, unknown.
(iv.) No stress across the curved surface, 1.c.,

N
rr = 0 when r = «,

—
92 = 0 when 7 = a.

These conditions will represent the state of things which we may expect to hold it
the cylinder be compressed between two rigid planes which are sufficiently rough to
prevent the expansion of the ends.

Now, in such a case as this, it is obvious that the expressions for the stresses and
strains as purely periodic series in z break down, for if we take the expressions (24)

and (26) for 77 and 72 the condition that w = const. when z = -+ ¢ will give us, as
before, . = 0, and the vanishing of the stresses at the curved surface will give two
homogeneous equations of condition between A, A, and C. These, taken in con-
junction with equation (85), give three linear homogeneous equations in A}, A, and
(), which are in? general inconsistent unless A, = 0, Ay =0, C =0, which would
destroy the periodic solution altogether,

We have therefore to assume that u and w are made up ot two parts. The
first part, which I shall denote by U, W, consists of the periodic solution hitherto
obtained. The second part is a finite power series in » and z. The resulting expres-
sion is a combination of the two types of solution, which are discussed separately by
Mr. CugreE (‘ Camb. Phil. Soc. Trans.,” vol. 14). Either of these two types, taken by
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itself, is of comparatively restricted application, but by combining the two we are
enabled to deal with far more general problems.
Assume therefore

wrd  Drg? | Er%? . Tt

"
u:uofr-i—%g- +T~§ +”"’2"‘+ 5 + — 1 -+U . ... (72),

wl7 1027 D'r?z | Er?p | Flrtz

STk AW (73)

The above power series are the most general expressions of the fifth degree con-
sistent with the conditions that % must be odd in 7 and even in z, and w must be odd
in z and even in 7.

In the above we have, as before,

U=3 { - %1 I, (kr) — S 71, (7c7“)}cos ke -0 oo (T4),
» A, C .
W=3 { N I, (kr) 4 . an (kfr)}sm 2 (£))

Consider first of all the condition that w is to be constant when z= 4+ ¢. This
fixes k :

k=nmfc. . . . . . . . . . . (76)

Further we have
F=o . . . . . . . . . . (77,
De+iEE=0 . . . . . . . . . (78)

Now remember that » and w have to satisfy the differential equations

d*u 12
()\+2M)d;;rz;( )+p'lz2+( +M)CCZ7§/-
1d T4 d*w
Ot e ~%z;">+<x+2m———o

The parts U and W we have seen already will satisfy these equations, provided
A — Ay +2Ck=0 . . . . . . . . (79).

Consider therefore only the algebraic terms. Of these uy and wype always
satisfy the above equations.
The third order terms require

Su (v 2w) 4 D (k) D=0 . . .. (30),

2A+p)D 4 2uD 4+ (A4 2p) 2w, =0 . . . . . (81)
2 B2
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The fifth order terms give
24 3 2\ 3 2 L 12
(M 2p) (5 uer® + 4B ) + pEr® 4 3ulf2® 4+ (N + p) (3E7*) = 0,

(N4 p) (4Er%2 4 2F28) 4 2uB/28 4+ (N + 2p) [4wyz® + 3E»%] = 0
which imply the four relations

24,

()\—}-2/:,5)—5“ +pl=0. . . . . . . . . . . (82),
2N+ p)F 4 2uF 4 (N 2p) 4wy =0 . . . . . (83),
AE(N 4 2p) +8ul + 3 (N pu)y=0 . . . . . . (84),
4E N+ p) + 3E N2u)y=0 . . . . (85).

There is, however, a further relation to be satisfied among these constants, and
™~

that is obtained as follows. If we proceed to write down the expressions for 77
~
and 7z and to put in them » = «, we shall obtain expressions of the form

~~

rr = algebraic polynomial in z - series of cosines of nuz/e,

o~ . ° . . .
rz = algebraic polynomial in z + series of sines of nwz/e,
where the coefficients of cos nmz/ec, sin nwz/e, contain the two undetermined con-
stants A, and A,
We may now proceed to expand the two polynomials in series of cosines or sines
of nwz/e. Tquating then the coefficient of each cosine and sine to zero, we can

~ N .
make 7r and 7z zero over the whole of the curved surface, and at the same time we
obtain two equations for A, and A,.
But it is clear that, if the Fourier expressions in the second case are to be con-

tinuous, then the algebraic polynomial part of 7z must reduce to zero when z = + ¢,
otherwise its expansion in sines of nwz/c is discontinuous, and at the perimeter
of the flat ends the shear is discontinuous. This introduces infinite stresses at this
point which render the solution inconvenient.

Now we have at our disposal nine constants; these have already been made to
satisfy the seven homogeneous equations (78), (80)—(85), and therefore we are free
to make them satisfy an eighth homogeneous equation.

Choose then the constants so as to make (polynomial part of [du/dz + dw/dr] when
r=a, z = -+ ¢) zero, and we have

Dac 4 Bode + Fac® + D'ac + Fac* =0 . . . . . (86).

If now we express all the other constants in terms of the constant I, we find ;
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m=[e=F]E u=H0 -y i,
wy, = iyE, Uy = — 5 (1 —vy) E,
Y 2 4ryc? =) (87),
D={4(14+y)?—a*}E D = 5 E,
F=—-3014+7yE F=—%yE

and these satisfy the equations and the condition (86):
Tt is noticeable that a solution can be obtained, in the form

ulv +]2;_+ U,

U= uyr 4+ —
w—woz—}- +W

which can be made to satisfy all the conditions except (86). If, however, one
works out this solution, it is found, as we should expect, to give infinite values for
the stresses, all round the perimeter of the plane ends. Thus, though simpler in
form, this solution is not really simpler to work with. I have given on pp. 217-219
the expressions for the stresses and displacements obtained from such a solution.

§ 14. Determination of the Coefficients so as to Satisfy the Conditions at the
Curved Surface.

If we write down the expressions for the stresses, we find

LZW
W dr

We have therefore to make
— (D 4+ D) az — Ea’z — (K 4 F) az
R

:%((A AL () + 5 o, (oc)>sinné'~.

<LZ‘>7%¢ (D + D’ az -+ Ea®z -+ (E + F) azd + (Z!::I

Now we find easily

® 20 . wmE
z=73(— 1)1 =sin —,

1 nm c

» . (263 126%\ nre
P J— — =127 _ .' R
P=3 (=1 (0 — ) sin ™

1 m n’ [4

Hence if we ezipand — (D 4+ D)az — Ea®* — (K + F)«z® in a series. of the form

* . Nz
Sa,sin — we find
1 C

a,=[— D +D)ac — Ea’c — (E'+ F) oocé’] (— 1)t xir .

12ac?

1 (_ l)n ! ?ﬁ 3 (E/ + F)
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The first term is zero in virtue of equation (86), and using the relations (87)
we find

16ac?
av= (= 07 B x 2y 4 1),
whence, comparing coefficients
2C ol 16ac®
A+ A, + 7%: =1y Gy HEDE L (88),

This gives us T consistently zero right up to the plane end.
Next we have

(;; Jr—o =2 (N ) uy + Mary

D
+ a? [5, (2N 4+ 3u) 1y + Y )\} + 2N 4 ) D+ ]
+ @? [(4N + 6p) E 4 3\E] + o <-6h _[_510#> Uy

A+ ‘U

AU VS
4ot [__?J_ﬁ T4 )\w{' + (A + 2p) (ﬁr>,~:” + o + )\<C "

dz ) red

Hence we have to make

o I C T2
= 4 PA A+ (=D AT 2[4 = L, b oos ™
= — 2(N 4 p)uy — Ny,
— a? [%(2)\ + 3p) u, + D;C} — a* (9} —210;/,) Uy
2 {o\ D 4y 4 (AN 6 B 3>\E/]}

A
—z*{—-j{;ﬂF%—)\wJ Coe e e e o (89).

Now we have

@ gl 1y am

22 e
e= 3 + ? nmr? ’
ct - 1 6 nre
= 380t (= 1) (e = Veos T
) + % ( ) it plat/

Hence if the right-hand side of equation (89) be expanded in the form

nme

fvs}
by, + 2 b, cos o
1
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we find
by = — 2(A + p)uy — N\,
e 1% /6N + 10u
— [g(zx + 3u)u, + N )\1 — at K\—n ‘5-> u,

o {(X + ) D+ ‘(2{2[(4X + 6p)E + my} |

—¢ [’”+”F+xw2]
_ (= BRI P ,
b, = — e N pw)D + A, + 2[(4)\ + 6p)E 4+ 3\E']
8et(— 1) [\ + 4804 x4+
- nng) { “r 4+ Mvz} p” 4( 1)“{#——21"]5‘ -+ )\wz} ,
whence using equations (87) we find after long but otherwise straightforward
reductions
2
+ #E{— ety — 5@y + 1)+ @7}
4cta® __ 96¢*
by=—(=1)" o pE(2y + 1 v i (—1)Epy.

Hence, equating coefficients on both sides of equation (89) we obtain the relations

2\ )y My = { = oty = <2y+1>+‘3““’} .. (o0),

I, ¢ .
—[(1 + 7) A+ (1 - 7) AT+ 2 [Al « T 0‘11]

:—(_1)"E><%i“—<.z +1 +5ij‘°"7“> Coe (91,

a’n?

and it In (91) we substitute for A, A, their values in terms of C/k deduced from (79)
and (88), we have

2/'_"_(_) ayl? — 17 (1 + «%y)

I ayly

4c2a?

_ ; ‘ AP 4ely 2y + 1)
= (""’ 1) pl % A [ZV + 1+ i (87 + 1) - }>

anml,
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or
4
: - DI — 45, (2 1
0 _ e [P 05 Lo 0 [Lmsmer 0}
T & v TT 21§ )T - Rk

A, and A, being known in terms of C, all the constants are now determined,
except u,, wy, and E.

§ 15. Determination of the Constants g, w,, E.

Let us now apply the condition that :

(2"(76

o~
[ readr = —maQ.
Jo

0

—_
It we write down the expression for zz, using the expressions for A, and A, in
terms of C, we find : '

2 = 2\ + (N 4 2p)w,

+ L'%g’—‘ul (0 2p) —Izl]ﬁ 4D 4 (M 20)w ] + [2E)\ + 270+ 2@]1’%2

6 N 1
+ 5 uer + [‘? + (A +2p) wzJ 2t

o,

% 2uCT o , .
+ 2 -’,::[plx (p) — 1o¢p) {Tj -2 H cos — -

IL(P) \n 16ac? TN
I (=1 x 7

+(2y + 1) pE 2
= 2\, + (A 4 2p)

(T, a7, . . .
+ plo 4! L—gcg + (2y — 1) 2]1 + [ =342y 1) 27— 2r%2? 1

% 2uC al,
+ 3 oL (p) = 1, () { 1= 2 | eos "

16a¢® nars

w I
-+ (2_)/ + 1) pE= Lo(e) (-—- 1)" X i cos
1
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Hence
2w o~
( ao ( zerdr = mwa® (2Miy + (N + 2p) wp)
v 0 <0
. ,, 'y s _ 429
+ uE X 25 (r“ F 5 Dw—]—%cﬂ o1 Zy+ 1)~ a]__gg >fy 1 __%jl

[0 o L
j + a2t (?‘_'YV':D + 160 (2y + 1) % (__ 1);,, ,,;,n,s LPTO@(?P cos ‘
L (‘ | ' ' I (@) J
22 201 1, 0) = 1) [ = 2] e ™

But

fal,

5:{1’211 (p) = Ly (p) BI?O - ]1 dp = (o) = al, (o L~ 2} =0 by (67)

and
[[Ta(p) dp = o, (x),

so that we have to make

2huy -+ (N 4 2p)

(o w21 Oyt D, e o)
+ uE b ["‘{5 ~ ot )c] - (f}” .LZ_Z_._ - (17_3 (2% — 24 |
. : , |
§ 4 ("" 1) ‘ Q
| +1b(2y+1)0 2 cos” Ji
Now it is easy to show that
(=l oamr At wt Tt
CETareos T = = o T g

whence finally

2ty -+ (A 2p) w, + 26T {“ Gr=b hoict = s 2y + 1)64} =—Q. . (%)
(90) and (93) thus give us already two equations for u,, w,, and E.  'We require a

third equation.

- This is obtained from the condition that

C(u).-, =0.

r=a

VOL. CXCVIIL—A. 2 ¢ -
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This gives
wd® | w® | Dad | Eab?® - Fact

A N e R R

Ay I
1

-I—E{—M OaIO}(—l)”:

ac

o+ 1=y =41 B = o (1 =) E+ C[3(1+9) ¢ = o]

_i_]i:a—c—-%(1-{—y)EOLC‘L (2y+1)2§@*n+§9« (= 1) =0.
1
Now 2 I
%(— 1) by = T 1 K¢,
where VZ; _ § [(?7 + 1)+ = (87 + 1)] (87+4)I] (94)
:1%‘% ) . ,

) 'yanZ—I (L4 gty

so that { is a known constant.

. . 1.
We then find, putting in for 3 o its value #/90,
1

w=—B| (T - Vo 4 (1hy =& 2y 1D e . (99)
If now we write

=@y =) +3da =1 2y + et

9= 1" (1—7—2)66"*—0&2(‘+ (1 4y =52y +1) et . . (96),

Aa(fy

h= =ty = @y 1)+ )

so that f, ¢, h are known constants, then equations (90), (93), (95) may be re-written
as follows :—

2ty + (A 4 2p) wy + p = — Q)

" + k=0 (97).
2 ()\ + /’“) uy + A, -+ ,LL]LE = 0 J
Solving, we have :
_ —Q(2y — 1) |
wh = (h+ @2y —Df+20@y—1)) - = - (98),
_ Qg 2y —1)
YT Ly =)t gy — 1)) o (99),
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_Q A=)+ 2y
poho 2y —1)f+ 2 @4y — 1)

All the constants are therefore absolutely determinate and the solution is
complete.

w, = . (100).

§ 16. Euxpressions for the Stresses.

The reduced expressions for the four stresses are given below :
7

~ 2 1 2 2 c?
Pl | {0 e a4 e 4o {04 f -y + )5

+ 22 X 2y[2¢* — @] — 1! <'y$ ) + 7% (4y + 1) — 2y2t

16ac? —1 T
+ 7 2y 03 (M 1)) os "

wLy(«) (101).
; 4
469a2,y§(_1)n[{(27 +1)a +;(8'}’ + 1)}11 — (8y + 4) IO]
T T o ya* (I — 1,%) — 1,2
aly aly  1N\I T
[< + 1> Ly(p)— (\ T+ ;>-17()Q —pLy (P):' cos
= —Q
2 1 29 —1 2¢?
+ rE {_’L oAt et — 3 (2y+ 1)04} + Tz{(ﬂlé___) a? %c}
— 252y + 1) — a?)— ﬁ—;—l — 20%° + £(2y 4+ 1)2*
16 1y I, e
L+ ey + 03 22 cos 7T . (102).
' p ; 4 : )
sty o (cay | {7 F VxS By + DL = 8y + 91,
B A yet (I7 — 1) — 12
i al T
[ #1t0) = L) {5 = 2} Joos ™
5 2 1 2 N
bp = uE /—{31132l at = @ %%yc*}+ 7'9’{(33/ -0
— (4y—1) g} + 2y2*{2c¢* — a?}
— (\_5"}1__“) + %22 (4y — 1) — 2yt
16ac’ Lp) . (108).
— = (2y +1)§, n3 le()cos ; (103)
Mﬁﬁﬁﬂiﬁw+ww+;wwuﬁn—wy+®@
I o v (I — 1% — Ip?
L(p)/el, 1\ o, /1 >_] wr
LR (% — -1 bkl
[ p <11+v> .I')(P)<v oo

2 ¢ 2
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— {32y +1)¢
16ac’

-1 Llp)

— a’trz 4 % — $(2y + 1)r?

nNwe

+ 2y 3
e 1()

| {@r+ e +%(8y+1>}1 —(5y+ )1 ]
W FPLT( I 1) B

[pl (p) — “] (P)J sin =

where, putting in for £, ¢, & in (98) their values,

Dy e

at$ at’
#(46’“1)(8“ 6) 19

§ 17. Numerical Example.

Let us now consider a concrete example.
nearly equal to its length.
for test pieces under pressure. We will take wa/c = 3 in order to
calculation of the I-functions.

Further, we shall assume uniconstant isotropy, so that y =12/3.
We then find :

- (104),

J

Take a cylinder whose diameter is
This corresponds about to the dimensions used in practice

simplify the

Q Q Q .
g = — C('10695),  w = — % (481906), uy= — - (079057),
0 2 ). wm=— 50 )y i € )
Q,. Q ,. . .. (O
wy= = (090552), = — L (1:46046), wy = (1°01193),
)
B = #%4(1"1,3842% I = — %(1-01193), F=— 2 (252082),
' (106),
(.
= »(1 63584), D/ = " (1'10970),
ILL(L“
{ = 2036847,
f= —at(-451889), g = at(-098947),  h = — a*(-455329)
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> .. (106a),

/; = — 455329a* — ‘9236507%a* + 1:5909942%?
J22v] .
B I
1 n° C
B (=) s T2
— 5 g €, CoS
2+ Q . g 2,2 . 2,2
— = 451889at 4 ‘89774870 — 2°4117162%*
MJ
NP Lzt 4 112 (L*E("*Wf Rk
12
8(&1 2(= J)“ e
)7 ) ’ n2 gn
‘/15‘4’ - 4 QF202 | a0 T
== = 4553294 — *3592357°a® 4+ 1°5909942%¢® — -
pli 9
5r2? ll,,a L2 (=1 nmz  8ut Z(— 1) s
SR Sl RUAR I, cos = 7 — 271 2 buco
~f1; = 2:411716a*z + r¥z — 2frzd 4 112 2( )]0,1 in 7
L 1 /
w 1 ” .
3 O E( ) ¢, SIn i
1 C
where
L ¢ :
a={""-1,p}/L@
76"
[:<7n+ )ua)_\_m @)]U "+1>1 () -< 5 1(”)-11(/))]
e, = [1 ‘Y/ P |

6n* (I)* — 1) —1,2
So=1o(p) /1, ()

[ o 76" - . . ol

(g jn=en ] [0 =1 {7 -2} |
In= 672 (I — 1,7) — 1,2
h=1,(p)/ pl, ()
76 ‘)s IM /i,[,” . } — l ’
- R/;H >1 — 2 I] r (\L +7> (7 - 1>Io(p)j|J
s (1 — ) — 12

=1 (p)/1,(2)

76 ; al
[(7” + é—n> L - '%8'10:] [PIO (p) — —I—;OII (P)]

"= 6n2 (I — 1) — 1,2

(1060)
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§ 18. Tables of the Constants for the special case taken.
The values of these constants I have calculated for the values 1 to 6 of n and the

values p =0, «/3, 2a/3, «, t.c., remembering that in our case a« = 3n, for p =0,
n, 2n, 3n. These values are given in the following tables :—

TaBLE of Constants.

Cne
n. r o= 0. "= /3. = 2a/3. T o= a.
1 - 126474 ~ 177294 ~ 875444 - +901257
2 - 815103 x 1072 - 241966 x 107! ~ +144470 - 929393
3 ~ 485003 x 1073 - +346613 x 1072 ~+bb3007 x 107! ~ *949670
4 - 275613 x 107¢ — 488500 x 107? —~+208129 x 1071 - 961180
5 - 1562381 x 107% ~ 6818356 x 107* —~ 776521 x 1072 ~ *968455
6 ~ 825385 x 1077 - 943397 x 107° —+288544 x 1072 - -973449

e
. r = 0. o= /3. r o= 2u/3. o=
1 971897 1-132478 1-575394 1-960798
2 120292 260646 '914018 1-998081
3 117631 x 10 586808 x 107! 534190 2319025
4 1945472 x 1073 115601 x 107! 273635 2-545291
5 678980 x 10+ 208131 x 1072 129351 2-702777
6 454266 x 1075 *353345 x 107 "582489 x 1071 2-816948

fn-
N 7= 0. 7 = a3 7 = 20/3. r o= a.
1 * 252949 - 320250 B76618 1-234590
2 163021 x 1071 +371619 x 107! 184245 1-096059
3 970005 x 1073 473439 x 107* 652177 x 1071 1-060779
4 551226 x 107¢ 622991 % 1073 235682 x 1071 1-044513
5 304762 x 107° 830167 x 10~* 857923 x 1072 1-035120
6 165477 x 107° 111258 'x 10* 313561 x 1072 1029005
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Jne
7= 0. r = af3. r = 2a/3. ¥ = g
1 — -787811 - +736099 -~ +324884 1-638888
2 — +155588 - +246518 - -431227 2-052233
3 ~ 176721 x 107! - -584824 x 10! - 326343 2-400197
4 - 152827 x 102 —+116088 x 101 - +189318 2623837
5 —~ 114613 x 1073 - +209107 x 10— - 963285 x 10! 2-774995
6 - 789128 x 105 ~+354776 x 1078 - 455547 x 10~1 2-882627
I
7= 0. o= /3, = 2a/3. o= a,
1 126474 142956 201175 1333333
2 815103 x 102 129653 x 10! 397748 x 107! 166667
3 485003 x 10— 127826 x 102 991703 x 102 111111
4 "275613 x 10— 134492 x 103 -275530 x 102 853333 x 10!
5 152381 x 10— 148331 x 10— 814018 x 10— 666667 x 10!
6 827386 x 107 169178 x 10-% 250165 x 102 555556 x 101
lne
r = 0. r = a/3. r = 2a/3. = a.
1 971897 1067168 1-386651 2-042427
2 120292 *179629 477822 1-664308
3 117631 x 10! -283739 x 10—} -185745 ; 1-682707
4 945472 x 103 414783 x 1072 707563 x 10~! 1-703514
5 678980 x 10— 586774 »x 103 266082 x 101 1716955
6 454266 x 105 817120 x 10—+ 993188 x 1072 1-725546
) Pn-
7= 0. = 0/3. = 2a/3. o= .
1 000000 142956 -402350 1-000000
2 000000 259307 x 101 159100 1-000000
3 000000 *383479 x 102 595020 x 10! 1-000000
4 000000 537967 x 103 220423 x 101 1-000000
5 -000000 +741658 x 10—+ 814019 x 102 1-000000
6 -000000 101507 x 10—* 300198 x 10—* 1000000
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ne
. 7= 0 7= a/3. : 7= 203, Po= .
1 +000000 - 382470 . —- 615993 : 000000
2 000000 - 200638 — 645084 000000
3 000000 — 540924 x 10! ~ 426702 *000000
4 000000 — 111882 x 10 ! - 230912 000000
5 -000000 —~+204756 x 10-* - +112874 000000
6 -000000 —+349986 x 107 - 518839 x 101 000000

The above, when substituted in the formule, give quite fairly rapid convergence
when »<a@, the convergency ratio being in this case less than unity by a finite
amount.  But when » = a, the series becomes comparable with the series

5 (21 g8

s --—~';, where i is a positive integer, and, as in the first problem, a special
n 4 |

procedure has to be adopted.

§ 19. Methods of Evaluation at the Curved Boundary.

When # = a, 77 and 7z are of course zero; but the stresses zz and b require
separate evalution.

Now, if we use the series for I and I, in descending powers of the argument, the
first few terms of these give a very good representation of the function when a is at
all large, and will be quite sufficient for « >18, at which point the tables of the
last paragraph stop.

Replacing I, T, by these series, we find

o \

fn(“)—1+9 —f-ga; —(3; + ..

w@==(1-g gttt

165 335
Z,, (Oc) =7 TZ)_w *8‘; [ . e e e . (107),

‘u

Cy ((X’) g — + :;"}," o “'-T, — ‘_;

157 503
(]ﬂ(a)_ 7 __,_+."_)_, +' )):g+

and

h (o) = i pla)=1, q.(z)=0.
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Now write
l// ((X) e l/z(dl) (0&) ~+ ln (0");
.(/‘/”/ (cl,) T e 911(4') (a) + Ga (0&),
Sl ) = —~ £, () + f. (2),
where 1, («) denotes the first four terms of the above series for [, (&), with a similar
meaning for ¢, (a) and Y («).

s . . . L ~
Then if we substitute in the equations for zz - (), ¢ we find :

22+ Q)r=q .
( ~~%}>»—f = 1'266504 ¢’ ~ 4411716 a%? 4 L2t
/.L Vi
o (— 1) 1 s (— 1)y narz
datx gy T e T vl
1 (=1 I%
- TR A Sl SO ,
lk + ]08:1’-4 a6 CO8 )
8.@4 0 nmi ]4,/;1,, gll/ 8L¢4 L0 n nmwe 35 ]l 335 *1‘1
PR (= e MRS T S e T8 -
Now remembering that
g grme w2 ™
PP o ¢ 4 & 12
SO o S
Tt ¢ c* 48 ¢t 24 720
g(= Ay onwz & wt o 2t ot @ Tt Slwd
s e T s 1440 T o 288 T 62 1440 T 30240
we find, using wa/c = 3,
(Do 90493930
nlia
— . J ‘Zi?’_ Xy N 'E(L . 2 \Z;G,
3 201d25cc£ + 2 2J1614a,*+ 009722 2a‘5
Sy M aae a9 sl sss 1]
- %( 1)" cos . {81 5 27 +27“‘; 2916 n5} ... (108).
And, in a similar manner,
(@)"z“ — .6 5 A yYy] zS . ¢ zl
—/;Ea—‘[ = e 13842415 4 16416832 i 1°1284672 p
E: 1) nE | g é’i/ i%.i_L 109)
“1(—-)008 p _7",,L;3+759“5 T .

VOL. CXCVILL.—A. 2 D
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§ 20. Calculation of the Series in the preceding Section.

If we work out the values of £/, ¢/, I,/ we find they are as tabulated below :

7. fn’ . g - L.

1 + 012367 — 540511 - 112667
2 + 000573 — 024011 + 006901
3 + +000078 - +002H38 + -002580
4 + 000025 - +001259 + + 000896
5 + +000009 —~+000217 + 000381
6 -+ -000005 - -000083 +-000195

Hence the parts of the ¥ which depend upon [/ f)//n®, g,/ /n* converge quite
rapidly enough to allow us to stop after the sixth term. 1t therefore merely remains
to evaluate the series

(1) nr
and E< },)' cos —— .
1

n’ c

w (o 1‘ n
h g—:)w cos
. w

nms

These cannot be expressed in finite terms, and although we may apply the Eurer-
MacrLavriN sum-formula to these series directly, though in a slightly modified form,
this sum-formula is not really of very great advantage, as its rapidity of convergence
depends on z, and is such, for certain values of this variable, as to render the formula
useless as an approximation to the remainder. As a matter of fact, however, the
series were to be calculated only for values of z = ic¢/6, 1 being any integer from
0 to 6. But for such values of z, the cosine terms repeat themselves after n = 6.

Thus,
o0 _“1 2= 1 ‘_‘
’ (‘i} cos <n'r' z\
P 6 /
= COSTTO = (0 12m) (1) 2 & igmy
. /m:oo 1 ; mfm 1 <‘
o 2“1”/6 \1)20 (2 - 12’)72/)3 <—- 1> mz:O (8 + 12777/)3>
E s
. =0 l Lm0 1 3
— P 1) & S
cosem <§D G 12my T (—=1F = G 12my )

A precisely similar formula holds for

@ (=1 nri
2, (-‘“ ) co8s <>~> .

L nd
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Thus we see we need only work out the series

T -5 d d
“EO (s + 127 ny? an mZO (9 + 17772)
where s has integral values ranging from 1 to 12.
These series are easily calculated, and, to them, the sum-formula is quite

applicable.

P : :
< By this means it was found that
—
o ( _1\y-1 ),
§ > b (~1) cos < ﬁﬂ>
olm rw .6
7 E T, N
NS = cos 7 (1:000,0027 + (—1)000,0598)
o |
=w — COS 27,71'/6'(‘031,2519 ~+ (—1) 000,0308

(—=1) )
+ cos 3im/6 (1004,1165 + (—1)7*000,0171)
— cos 44m/6 ("000,9776 + (—1)' *000,0102)
(—1) )
(=1 )

+ cos 5im/6 ("000,3207 4 (— 1)’ ©000,0064

PHILOSOPHICAL
TRANSACTIONS
OF

— cosim  (1000,1291 + (—1) ©000,0041

© (1 n—1
and 3 ) - Ccos <7—L ZZ)
1

‘= cosim/6 (1°000,5611 4 (—1)1:003,1246
— cos 20m/6 (1125,4607 4 (—1)"002,1368

)

)

+ cos 3im/6 (037,4212 + (—1) -001,5343)

— cos 47/6 (*015,9496 - (—1) “001,1448)

\/444‘ + cos 5im/6 ("008,2777 -+ (=-1) 000,8811)
~

::‘ — cosim  ('004,8694 + (—1)7000,6956),
—

2 : and the calculation of the stresses on the boundary then became a simple matter.

L
RO
O
= w

PHILOSOPHICAL
TRANSACTIONS
OF
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§ 21. Numerical Values of the Stresses.

The values of the stresses, referred to the mean pressure as unit, are tabulated

below :
TABLE of Stresces.
@ ~
2] Zﬁ'/Q.
> > r. .0, % = ¢f6. S 9006, | 5= 36, | o= 4e/6. | 2 = Be/6. S
O ~ / /
= - - — -
13N @) 0 1-13382 | —1-13436  —1-13322 112148 1 —~1-080006 @ -—-1-03372 -~ -685376
E o (6/3 ~1-09971 | —1-10053 | —1-10017 @ —~1-:08998 @ —1-05441 - 96416 ' — 749592
— o 2(&/3 —1-00724 | -1-00896 | —~1-01314 ' —1-016h3 @ -1 -0055%7 -97136 -~ 92845
b5a/6 — 94841 | — -94843 i — -9H0H6  — 96037 | -~ -98465 | —-1:01726 @ —-1-:08211
/
2“2 a — 89430 | — -88809 | — -87216 - -8584bH ¥ — 88177 | —1-04077 | -1-68635
Yo | | |
=—
=l
8% ° 7r/Q.
Oz . .
T |
&= 7. g = 0. z = ¢[6 2= 2e/6. | ©=38c/6. z=4¢/6. | z=D5c/6 Z=c |
0 — 00274 — 01414 — 05134 - 12416 1 — -2532b - 481581 -~ 89668 1‘
/3 - 00181 — 01118 — 04201 - +10220 1 - -20471 -37182 — (593D ‘
2&/3 - 00110 — 00459 — 01759 — 04481 ~ 09244 — 14971 — 09977
a +00000 - 00000 -00000 -00000 [ -00000 -00000 00000
$b/Q.
7, | z=0. 2 = ¢[6. z = /6. z = 3¢f6. ’ 2 = 4e/6. 7 = Be/6 g = (!
i . i . S R
< | &
@ 0 - 00274 — 01414 — 05134 — 12416 | -~ 285325 — 48151 - 89668 ‘
> af3 ©00299 | —-00737 | —-04126 | — 10748 | —-22288 = — 42120 | - 77798
< >__1 20/3 ~01744 -01017 — 01461 - 06480 1 — 15199 — 98607 - 48160 |
S — i « | +03265 03013 -02030 - 00516 | - 06344 — 18728 - 43801
| | |
= ——
)
am @) 12/Q.
=w L : -
<% . — e=ol6. | 2= 26 | == 3/6. = de6. | 2= Bef6 _
Yo i !
T= - : - T -
i i
%U o i 0 +00000 +00000 -00000 -00006 | 00000 ‘ 00000 -00000
mﬁ 0 a/3 +00000 -00705H — 00388 - 02020 © - 056902 | — 14798 — - 35357
92 2[&/3 ~ 00000 +0042H - 00171 - 02712 | —-0864bH [ - 19750 — 44154
':-: § a +00000 -00000 +00000 +00000 ' - 00000 i 00000 <0000
o= | I
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Tn the above the values of zz for an additional value of 7 (viz.,r = 5a/6) have been
computed in order to exhibit more clearly the variation in the pressure along the
radius.

The numerical results here given are shown graphically in Diagrams 7-10. We

see at once that, save near the ends, the stresses ;-7\, &ﬁ, and 72 do not differ very
much from zero, which is the value they should bave on the uniform pressure
hypothesis. On the other hand, the axial pressure deviates throughout from
uniformity over the cross-section, the total variation in any section remaining
tolerably constant over nearly two-thirds of the length of the cylinder, and equal to
about 25 per cent. of the mean pressure.

Diagram 7.—Showing Stress 7 for Cylinder com- Diagram 8.—Showing Stress 77 for Cylinder com-

pressed between Rough Planes (second example). pressed between Rough Planes (second example).
17 e Curve of 2z whern 7o T
i on L E2B, : - o
e T A == ' 9 Curve of FFWHA =7
—reQl o w e n Fed / — e — - LI R W g7 ) |
: - toe b e rzas
! --8Q - ‘
-15Q f /
j -7Q
-1 ; / /
I -66) 0
136 ; / /
. j ~ /
. Q. /
§ -/.ZQ il % 5Q //
3 f 3 /
%) . I &) - 4 Q yi
=t e i
Q [~ ~\\\ \i ./ Q ///
: T R -3 /
_Q ____________ I o=l ‘;\_:p\ //
: e / ;\\\ /
B ANV -20Q —
. \ /s
_'90 = oo, ../' '\ //’ PO
T e s
-8Q LT
\ /0;//{»{4‘/ e
S R e R SSITON NSRS (SN SR
~70 0 Cls EClE 30l 4ol 5k C
0 o6 zCls 3k /s 506 C Lengths along Awis of cybinder.

Lengths along Azis of cylinder:

We notice also, that, near the centre of the cylinder, the greatest pressures occur
at the centre of the cross-section; whereas the reverse takes place at the ends, the
pressure at the perimster of the ends amounting to about 13 times the mean
pressure.

If we bear in mind the suggestion of the first problem of the present paper, that
surface shear depresses those parts of the material towards which it acts, it is easy to
see, physically, why such a distribution of pressure should be expected in practice.
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The system of frictional shears required to prevent the ends expanding will be
towards the centre: the parts of the material round the centre will therefore be
depressed, and the compressing planes (supposed rigid) will have to compress

) O
the outer portions more than the inner, if the cross-section is to retain its original
plane form, ¢.c., remain in contact with the compressing planes throughout. It is
thus not surprising that the greatest pressure should be at the perimeter, being in
fact nearly 24 times the pressure at the centre.

Diagram 9.—Showing Stress b for Cylinder com- Diagram 10.—Showing Stress 72 for Cylinder com-

pressed between Rough Planes (second example). pressed between Rough Planes (second example).
9ty o Gowhen o ' ’ ' '
et A A e o5~ S N —Curve of ¥z when r=ays
oI e he2al R R £ = VC
80 I Y- ) .
I{
II ‘I
- 7Q /; /
} /
/ 'l /
--60 4 -30 T
’ !
I’ i
_.50 4 /
({) Il . /
*’5) ~4d /I K ' J %EQ
9D Ay 3 /
// / ',/ @ //
- JQ 7 / 7 /
/ / /'/ / ’ /
~‘20 ,/ /' . -/Q /‘/
4 B
s/ Be
Vs / / /
— /Q ys < . ~
// e 4 2
’/’;/,/ e //
. L 7
O===—F=7 O res=zaam
+10 +-05@)

G6 2C/6 306 <€CE 506 C C6 206 36/6 4c6 S0k C
Lengths along Axis of cybinder. Lengths atong Azis of cybinder:

We see also that, near the mid-sections, the cross-radial traction changes from a
pressure to a tension as we go towards the circumference, so that the outer parts of
the material are subject to two pressures, parallel to the axis and the radius respec-
tively and to a tension, at right angles to these. It should be noticed here that, in
the diagrams, the ordinates representing the stresses increase negatively upwards.
This has been found convenient in this case, where, owing to the general pre-
dominance of pressures, the greater part of the stresses have the negative sign.
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§22. Principal Stresses at each Pownt.  Lines of Principal Stress.

Now, when we have a distribution of stress

A~~~ o~
rr, ¢d, 2z, 172,

which is symmetrical about an axis, then the principal stresses are
— —~ /‘\r
RR, ¢, ZZ;

- . . . . .
where ¢¢ is the same as before, and RR, ZZ are two tractions in the meridian plane,

RR making an angle 6 with 7/'\7', where

2%r
tan 20 = =—= . (110),
rr — 2%
and the values of RR and ZZ are given by
BR =" 4 4 /(= 2+ 4 ()
(111).
72=""0" =y N =By 4Gy

Whence, using the tables in §21, we find the following values for RR and ZZ
compared with the mean pressure over the ends.

TaABLE of Principal Stresses.

L N

A\

y i

Y
A

a

THE ROYAL
SOCIETY

OF

PHILOSOPHICAL
TRANSACTIONS

RR/Q.
7. 2z =0, 2 = ¢[6. 2 = 2¢/6. z = 3¢f6. z = 4¢/6. 2 = be/6. z=c
0 - 00274 - 01414 — 05134 —~ 12416 — 25325 - 48151 — +89668
al3 - 00181 - 01113 - 04199 10178 — +20063 — 33690 —~ +34800
2a/3 - 00110 — 00457 - 01758 — 04405 — 08433 - 09804 +09139
a +00000 +00000 +00000 00000 -00000 -00000 -00000
72)Q.
7. z=0. 2 = ¢/6. z = 2¢/6. z = 3¢/6. @ = 4cf6. z = bc/6 Z=c
0 ~1-13382 | —1-13436 | —1-13322 | ~1-12146 | —1-08000 | —1:03372 | —~0-68576
al3 ~1-09971 | —1-100567 | —1-10018 | -~1-09039 | —1-05849 | —-0:99907 | --1-06087
2a/3 ~1:00724 | -1-00898 | —1-01314 | -1-01628 | —1-01467 | —1-01602 | ~1-11961
@ —-0-89430 | --0-88809 | ~0-87216 | —-0-85845 | —0-88177 | -1-04077 | —1-68635
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The values of tan @ for the same points are given in the following table :

Tasre of Slope of Lines of Principal Stress (tan 0).

=0, | #=10¢/06. | z2=2922/6. 2= 8¢/6. z=4¢/6.| z=D5c/6.] z=rc

|
|
|
|
|
0
|

0 0 o 0 0 o 0
af3 0 -0064 | ~-0038 - 0201 | 0690 | - -2358 | — 8806
2/3 0 0044 | 0017 | --0279 | —-0936 | —-2303 | - 4331
@ 0 0 0 | 0 0 0 0

By the aid of the above, we may draw the lines of principal stress, which is done
in Diagram 11, the slope being exaggerated in the ratio 10:1. In order to do so,
we suppose the line of principal stress to remain always in the neighbourhood of the

same generator, so that, in the above table, the values in any row apply to the same

Diagram 11.—Lines of principal Stress for Cylinder compressed between Rough Planes (second example)
=
9
3 S

S
o3

[ e stress for rEwlE T f
Vi Carawn Lo base o). /

=~~~Ling o slressor y=2a/s j
Frean Lo base 0.

=
g

A&zg&&s adorng Aadius cscale=iotimes forizonial
AN
Y
\\

w9

o
G 3 B, M‘:’T/ o » &
o6 2ol Foe SO ek ¢

Lengths along Axis of cylinder.

line of principal stress. This of course 1s not correct near the ends, but it is sufficient
for our purpose, the diagram being merely intended to show the general course of the
lines of stress. These are sensibly parallel to the generators throughout the middle
part of the cylinder, but slope outwards near the ends.

S . o . o ae . . S
Diagram 12% shows the distribution of the lines of equal principal stress ZZ
* InDiagram 12, as in several others, « is represented as having the same value as ¢, so that the horizontal

and vertical scales are not strietly the same, but differ in the ratio =/3. This has been done for con-
. venience in plotting.
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inside the cylinder. I have chosen the stress 77 in preference to the others, as,
except in the neighbourhood of the centres of the plane ends, it is everywhere the

Diagram 12.—Distribution of Principal Stress 7.7 inside the Cylinder (case of compression hetween
Rough Rigid Planes).
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The lines are drawn at intervals of ‘05 Q of the stress. The critical line corresponds to 77 = 101 Q nearly

greatest of the three principal stresses, and therefore 77 will be the important
quantity when we come to discuss the maximum stress.
The diagram has been constructed by careful interpolation from the values
tabulated above, and from it we see that the surfaces of equal principal stress in the
VOL. OXCVIIL—A. 2 B
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cylinder are in general made up of three sheets, and they fall into two classes:
Pt . . . .
(@) those for which ZZ has a value less than a certain critical value, which, as nearly

as I can find out from graphical methods, is about 1-01 Q, and () those for which 77
has a value greater than 101 Q. -

The surfaces (c) consist of two solid caps or buttons, round the centres of the end
sections, together with a hollow cylindrical shell surrounding the middle of the
cylinder. For values sensibly < -9 Q the latter sheet disappears, and only the caps

remain, their volume gradually dwindling down to zero as 77 falls to -686 Q.

The surfaces (b) consist of an elongated core, resembling a cylinder closed by
curved ends, surrounding the centre of the compressed block, together with two
annuli at the ends, as shown in the figure referred to.

—~

The critical surface ZZ 1-01Q consists of two nearly plane sheets, roughly co-
inciding with the cross-sections Z = 4 5 ¢/6, and one cylindrical sheet, which bends
inwards towards the end, though without completely closing in, and which roughly
coincides with the cylinder » = 2a/3 over the greater part of its surface.

§ 28, Application to Rupiure.  Distribution of Maximuwm Stress, Strain, and
Stress Difference.

In considering what happens when a material breaks, we have to ask, first of all,
whether it be brittle or ductile. In the first case, the law of stress to strain will be
approximately linear up to the point where rupture takes place ; in the second case,
the stress-strain relation remains approximately linear until a point is reached (called
the yield-point) at which a large and sudden change occurs in the stress-strain curve,
after which the material becomes sensibly plastic, so that rupture finally takes place
after a large permaneut deformation.

In applying an elastic theory to practiee, we can, in strictuess, treat of rupture
only in the case of a brittle solid.  Even then it has to be borne in mind that the
mathematical theory of strains—upon which the equations of elasticity depend—
requires the strains to be so small that their squares are negligible. Tt is possible
that, even in the case of the most brittle solids known, this condition may cease to
hold before rupture occurs, although the stress-strain relation may continue to be
linear. Nevertheless, the caloulated values of even the breaking strains in a material
like east iron, for mstance, are so small as to render this unlikely.

For a ductile metal, such as mild steel, the elastic results only tell you where the
material will begin to take permanent set.

In the case of stone or cement, however, to which the present results would be
applied, there seems to e no definite yield-point or elastic limit, the material being,
in fact, only imperfectly elastic throughout. Still, we may consider that the results
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of elastic theory give in such a case an indication of the state of stress when the
specimen breaks. |

There are three distinet theories, both of rupture and of failure of elasticity.
According to Lamit and NAVIER, failure occurs when the greatest stress at any point
exceeds a certain limiting value. This is also often taken as the criterion of absolute
rupture. According to SAINT-VENANT, the maximum strain, and not the maximum
stress, is that which determines failure. Finally, a theory has lately been put forward
by various elasticians to the effect that failure occurs when the greatest shear at any
point, that is, the greatest principal stress-difference, exceeds a definite amount.

Professor PERRY has proposed another criterion, suggested by the angle at which
compressed cylinders shear (see ¢ Applied Mechanics, pp. 344-345), namely, that
rupture takes place when s — up exceeds a certain value, where s is the shear across
any element of area at a point, p is the normal pressure on this element of area, and
p is a constant depending on the material. This theory, however, need not concern
us so much, as it appears more specially applicable to the final breakdown of ductile
materials long after they have become plastic. On the other hand, it has been
shown by Mr. J. J. Gugsr (¢ Phil. Mag.,” July, 1900) that the beginning of plasticity
was very probably determined by the maximum stress-difference.

Let us now proceed to apply these three criteria, namely, those of the maximum
stress, maximum strain, and maximum stress-difference to the cylinder in the present
example, and see what results they give us, on the hypothesis that for materials like
stone and cement, plastic yielding and rupture are simultaneous.

Consider first the greatest stress theory. This would make failure of elasticity
first begin to occur round the perimeter of the plane ends, and that as soon as
168635 Q > a certain limiting value S,. If the pressure be uniformly applied, and
the ends expand, we get failure of elasticity when

Q> S,

Hence the apparent strength of a cylinder tested in this way would be about '593
of the strength of a cylinder tested under a distribution such as is usually assumed.

Further, if we consider the regions where the stress is greater than a given value S,
we find that they consist of separate spaces, which join on to each other as S
diminishes, the critical value for which this occurs being given by S = 101 Q. The
regions of greatest stress consist therefore of a central core, which spreads out into a
sort of hollow cone near the ends. If then we suppose fracture to occur over regions
of greatest stress, we see why it is that the material bleaks off in conical pieces at
the ends.

Consider now the greatest strain themy Let T, Ty, Ty be the three principal
stresses, and s, sy, s; the corresponding stretches.

1/ \
Then =g (M= +—2 (T, +T, 4+ 1 )>
28 2
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so that the greatest s will correspond to the greatest I, if T, T,, Ty have the same
. . . _ ~~ .
sign. This is our case everywhere, except in cases where ¢¢p > 0, and then ¢ is so

—_—
small that it still leaves the strain corresponding to ZZ numerically the greatest.
We have then, remembering we have assumed A = p, to investigate the values of

75— (774 RR + ¢ ) = 2ps..
This will be proportional to the greatest strain, except near z = 4- ¢, 7 = 0, where
RR — L (Z7Z + RR +$d) = 2us,

should be taken. 1t is found, however, that at this point the strain is comparatively
small, and the maximum strain there is a matter of indifference.

TABLE of s,/s, where s == maximum stretch under the same uniform pressure.

7, z =0, ‘ z = ¢/6. Cz= 2¢/6. z = 3c/6. i z = 4c/6. z = DBef6. 2=
“ i
: | :

0 1-13245 | 1-12729 1-10755 } 1-05938 | +95338 77296 23743
a/3 1-10000  1-09589 1-07935 | 1-03766 | -94751 -76590 39034
20/3 1-01133 * 1-01035 1-00509 | 98813 | -04446 86416 -78311

ll 90246 89563 87724 . -85716 é 86591 +99395 157685

It we take therefore the “ greatest stretch ” theory, failure of elasticity still oceurs

at the perimeter of the ends, but this time only when the stress is e (limiting
stress in the case of uniformly compressed cylinder), so that although the apparent
strength is less than in the uniform case, it is greater than if we adopt the * greatest
stress” theory.

The lines of equal principal stretch s./s are shown in Diagram 13. They are

drawn for only one quarter of the meridian plane, the rest being symmetrical. They

present the same general characteristics as the curves of equal stress ZAZ, with this
difference, that the critical line corresponds to s, = *915 s,  Again, the caps or buttons
at the ends are far larger; so that if pieces are cut out, they will be considerably
larger than on the “greatest stress” theory. Also, looking at the inclination of the
lines joining the corners to the critical points, <.e., the points where the two branches
of the critical line intersect, we see that the fragments, if approximately conical near
their base, will probably be cut off at a much higher angle than in the previous case.

Let us now proceed to consider what happens if we adopt the third or “ greatest

N
stress-difference ” theory of rupture. It is easy to see from the tables of RR, ZZ,

and q’S?{; that the greatest stress-difference is either RR-ZZ or @—Zfz In the
sixteen cases tabulated, for which z > ¢/3, the first of these is the greatest stress-
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difference, and in the twelve remaining cases the second is the greatest, although,

as a matter of fact, the two stress-differences, for these twelve cases, do not diverge
very much.

Diagram 13.—Distribution of Principal Stretch, s,, inside the Cylinder (case of Compression between

Rough Rigid Planes).
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The number corresponding to each line = the value of s,/s for that line.
----------- , eritical line.  s;/s = 915,

The actual greatest stress-difference is given in the following table :-—

TasLe of (Maximum Stress-difference) /Q.

7. z = 0. 2 =¢/6. z = 2¢/6. | z = 3¢/6. | z = 4¢/6. | z = bc/6. Z=c
0 1-13108 1-12022 1-08188 I 99730 *82675 55221 | - 21092
/3 1-10270 1-09320 1-05892 1 98861 - *85786 66217 71287
2a/3 1-02486 1:01915 99853 | 97223 93034 ‘91798 1-21101
I +92695 91821 89246 . -85845 88177 1-04077 1:68635
]

Here again plastic deformation will first occur round the perimeter of the ends

when Q = ("176583'5) of the value it should have, on the same theory of rupture, in

order to produce failure of elasticity in a uniformly compressed cylinder.
So far, then, this theory leads to the same results as the maximum stress theory.
Diagram 14 shows the distribution of maximum stress-difference. The lines of
equal maximum stress-difference present very similar characteristics to those of equal
maximum stretch. The critical line corresponds to a maximum stress-difference =
‘933 Q.

Remarks similar to those used in the last case apply in this.
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Diagram 14.—Distribution of Principal Stress-difference inside the Cylinder (case of Compression between
Rough Rigid Planes).
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The number corresponding to each line denotes the value of the ratio (maximum stress-diffevence : Q)
for that line.
------------- , eritical line.  Stress-difference = 933 Q.

§ 24. Distorted Shapz of the Curved Surface.
If we work out the values of w when » = «, we find, after ‘some reductions,

PP w2 _
u,,,zszas{.‘-f IR AN Z‘{(._l)’lcosn':k}, L (112),

12 at 1«
where

4 ,
{(27 + xSy + 1)}11:2 AL 2y + 1)
Rt

. (113).

2
771_—'

Now in the particular case we are dealing with, if « be large, », («) approximates to

49 335 55

et Tas T

‘Write then

a9 R
5305‘ D) :

7 49 .
T (a) =2 4 +516a2}+§4a3 + 7’,,,’(0() oo e (114)’

1 nmwe .
and % -, cos —— their
n* C

nrmz

. . . . 1
and substitute in (112). We find, putting in for % cos=

known values,
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U = Ea 12~ 378 7‘)9 180 81 \ a? 06 + 9880 \ a2 a?) |
I 7e3 E(—- 1y o T 335 o’§§:‘_l)”c% e Lo (115),
7031 n3 ¢ 87 b Ton 4

— 28 (= 1y s

L 1 6‘ J

where, putting in now wa = 3¢, we have the following values for »,” :—

0. 7 ().
. .. —-42430
2 . . . —=01807
3 . . . —00223
—00063

5 .. —00024
6 . . . =—-00010

Whence, using the methods of § 20, we find the following values for u/u, where
u, = lateral expansion of a cylinder of the same dimensions under the same total
pressure uniformly distributed :—
Z. ufig.
0. . . . . 97861
¢of6 . . . . 96325
26 . . . . 91118
8¢/6 . . . . 80402
de/6 . . . . 61209
5¢/6 . . . . 30863
¢ . . . . 00000

These results ave exhibited in Diagram 15.  We see that the cylinder has a single
bulge in the centre, and indeed it is easy to verity that (d*u/d=*), <0 by differentiating
equation (115) and putting in the numerical values.

Diagram 15.—Showing Distortion of Curved Surface (second example).
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This agrees with the figures shown by Bacn in his ¢ Elasticitit und Festigkeit’
(figs. 2 and 3, Par. 11) of the distorted shapes of such cylinders. There are,
however, in the possession of Professor KaArL Prarson, at University College,
London, specimens of iron which have been strongly compressed, so that the strain
has been large and permanent and the meridian section of the distorted curved
surface is an chviously wavy curve, with fwo maxima, one on either side of the mid-
section. With regard to the apparent disagreement here hetween theory and practice,
I would observe that these specimens have been subjected to enormous stresses, for
which the equations of elasticity certainly do not apply, and probably are not even
an approximation; in the second place, the specimens I have seen are longer,
compared with their diameter, than the cylinder of the present numerical example,
so that it is easy to see why the conclusions above need not apply to these specimens.

§ 25. Apparent Young's Modulus and Pousson’s Ratio.

We find that the total shortening of the bar

e 2(@()5:L=2 Q/[-L - . <116),
dy—1) {8 ot atf] et
W ECT G T
41, .
ml[(2y+1)a+ (8y+1)] 12y +)
where (=24 2—5 I 1 '
1
(ﬁ) — (14ya?)
| Hence the apparent Youna's modulus Ey' = Qc/(w)._,
[y — 5} = 2]
EY = p : " , (117).

att at ‘
7{4% _75‘} — 51—

..J 7G£L
J1 = < + — {52 +- )
o 1 86y + 7 at
and {=967% ,x4<1 dy — 1 96) )

retaining only terms of 4th order,

96 ﬁ‘* 5(3})/ +

where v is the greatest integral value for which « = vra/c makes the above approxi-
mation sutlicient.
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Hence it a/c is very small, » may be large, and thus although the first term in
a*f/6 cancels 5 ¢*, yot the terms in curled brackets will become indefinitely large
compared with the other terms. Thus, for a very long cylinder,

s ry—0 _
hJY _—TTTTTTTTT == .[Ly,
v
where Ey is the true Yound’s modulus.
On the other hand, for a very short cylinder, ¢/a is very small, and { being of the

24 #2944 121 . . : . .
order = o i 250 the two leading terms in the numerator and denominator
7 L .

of the right-hand side of (117) are negligible and

FE/= o —_ Y DI
PR Ty R

This is identical with the modulus of compression for a cylinder which is prevented
from expanding laterally by a constant pressure applied to the sides. So that we see
that for a very flat disc the effect on the modulus of compression is the same, whether
the lateral expansion be prevented by means of shearing-stress over the flat ends, or
by hydrostatic pressure over the curved surface.

The apparent Youna’s modulus for intermediate cases will be between those two
values (these, for uniconstant isotropy, being Ey and 6/5 Ey). Thus, in the given
example, where y = 2/3,

By = 1:0498E,.

Po1ssoN’s ratio comes out to be apparently 2690 instead of *2500.

Thus the errors in the values of Yound’s modulus and Poissox’s ratio, as deduced
from an experiment with cylinders under the given conditions, will be 5 per cent.
and 7°6 per cent. respectively.

§ 26. Soluteon tnvolving Discontenuities at the Pervmeter of the Plane Ends.

In § 13 it was stated that a solution, obtained by methods strictly analogous to
those used in that section, but which neglected the condition that the shear »z should
be continuous at the perimeter of the plane ends, could be found.

It seems of interest to give, for purposes of comparison, the expressions for the
displacements and stresses, deduced from this solution. They are :

, oo L A A ¢
u=up 4 w33 4 Drz¥/2 4+ 3 { - L (kr) — -']ja"IO (hr) } cos kz
l v v
.y . . (118)
w=wyz + w3+ 3 {i/“ 1, (kr) + / rly (ki) } sin Az J
i g

VOL. CXCVIIL—A. 2
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where = — (L —~)D ,
1 3( 7’) ) , (11 9>,
wy = —yD '
A, — A = 20/ky
— 2Caly(a) | 2Dac, ., } | (120),
AQ‘ + Al - ko 1 (a) nm ( —1)
where
k = nx/c.
Also
, D o, el (a) (dy + 1) — yel (a) -
C=— (= 1)y X 121),
A R (TN STy Koy (21)
and v ,
u, =D [g (I —y)a® — 3]
W, = (;——"ﬁ‘ *’;CL" O "“""J.
! 2y =13 T -y 4y =1
where D= — Q 2y —1 ) T 229
= R :
PE S 2y = 1)+ By = 1)
4 3
and __ 3zl ‘[Irg (dy + 1) = alyl|
{=— 332 (LE — 1.2) — .2 !
w7t Lyt (I8 — 1)) — 1 /

The method by which the constants are obtained is precisely the same as thal
used n §§ 14, 15.
The expressions for the stresses are given below :

N s 2 o O\ g 2eeg (=L () L] e
S [0y @ =y (2 ) R R e
. w 9 al . u‘lv( 171 - . z g ¢
+>70 {1+'*’Q} Ly (p) — { ot }"1"(H)'—P1L(p) cos T (123),
1k I Iy 7 p - ¢
9 _ 1l ¢ N O W TR 2 Gl 0 1K 1) W_J
y = D {i (L +y)a*+ 2y (4 5 ) 1By — 1)1 - ? vl (e O

/

200/ Ty 1, 2l L (p) e .
4——}—?'--6[(1——;/>10(p)+<v+ 11> ) ]co,s PR EEE T (124),

o~ P T . SN
zz 4 Q D 2% 2y —\@ g  2y—1 4 2ac %, (= D1, (p) cos nar
- 3 + 4 - 2 w7 o 1(2) ¢
20 nary

+5;,L.HZ—-ai?}lo(p)+p11(P)10087' T G

- dag e (— 11, (p) . nme
A ',Z e A e
Y D[w -+ Rl 1l(a)sm ;

NS

= 20/ . i al\ . wmi o
+§;¢L <PIO</O)_11(P) l_U> s g e (126).

1
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It is now easy to see, if we bear in mind that when n and therefore « is large, CI,
remains finite, as appears on examination of (121), how it is that the stresses at the
boundary become infinite.

For in both zz + Q and ?&b we have, when r = a, terms of order 1/n, when n is
large. These are of alternate sign, C containing (—1)" But if z = 4 ¢ they
become all of the same sign, and the series become logarithmically infinite.

§ 27. Summary of Results.

Looking back upon the results obtained, we notice :

(a.) That the three solutions we have been considering successively are only the
simplest of an infinite series of solutions, which are continually growing more com-
plicated ; for we need not necessarily stop, as has been done, at terms of the fifth
degree, but might go on to terms of any degree in = and z and thus construct, as it
were, solutions of successive orders. We should then have an infinite number of
free constants, which might be determined by introducing further limitations at the
plane ends, such as, for instance, restricting n to be zero at every point and not
merely along the perimeter.

The analytical complexity of such a complete solution would, however, be very
great, and would render it quite beyond the reach of arithmetical expression, and
consequently valueless for the purposes of the engineer and the physicist. No
attempt has therefore been made to develop this solution, although, as an analytical
possibility, it appears interesting.

(b.) That the different solutions all agree in giving the perimeter of the plane
ends as the locus of the points where the elastic limit will first be passed, one of
these solutions actually making the stress infinite at this perimeter.

In the more important solution, however, where continuity and finiteness are pre-
served, the conclusion still holds, and, further, is independent of whatever theory of
tendency to rupture we adopt, whether we suppose it due to maximum stress, to
maximum stretch or squeeze, or to maximum shear or stress-difference.

(¢.) That in the numerical example considered, plastic deformation begins to occur
round the perimeter for a stress between 2/3 and 1/2 of that which is required to
cause a cylinder under uniform pressure to pass the elastic limit.

This is apparently in contradiction with the results of engineering experience, both
Uxwix and PERRY stating that blocks of stone or cement, pressed between millboard,
which hinders the expansion of the ends, show greater strength than the same blocks
when the ends are allowed to expand.

The key to this appears to be found in a remark of UNxwiN, which Professor Ewina
confirms, that the lead sheets do not merely allow the expansion of the block, they
Joree it, i.e., lead in its plastic state will expand more than the stone or cement would
do laterally under a uniform axial pressure.

2 TF2
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But the solution, when the ends are compelled to expand by a given quantity «,,
is easily deducible from that given for non-expanding ends. Thus, let u,, w, be the
values of # and w in the case worked out, when Q = 1, and let us write

=D < M > + Ru,,

2u (3N + 2p)

—p (At pe
w=P (# Gt 2#)> + Raw,.

Then this will satisfy all the conditions, provided

r
}i (:)»_;—MZ/; X = n,

and P4+ R=0Q.

Therefore wgr '

U = ‘) 1y,

I

2@ IU/ :
& <Q — 2K (6N agr)

— 2\ ) \
P ‘(7‘;';_/") ‘Tf: + <Q - %0;‘:(6)\ o+ 4p) /\ w,,
giving the solution under a given mean pressure Q, which produces a flow «; of a
lead plate, and thereby constrains the ends of the test piece to expand by that
amount.

The principal stress at the perimeter of the section is now

P 4 (1'686) R = 1686 Q — 686 P,

and if P, 7.e., #,, be made large enough, this can be made much smaller than Q. Tt
begins to be smaller than @) as soon as the expansion induced by the flow of the lead
is greater than the natural expansion of the stone under uniform pressure.

On the other hand, the principal stress at the centre of the plane ends is

P+ 686 R = 686 Q + 314 P,

and this again may be made great by making e, large.
The principal stress-differences are :

at the perimeter 1°686 Q — ‘686 P
at the centre P—=211R=—"211Q + 1211 P.

Hence we see that whatever theory of failure we adopt, if the ends are forced to
expand, so that P > Q, the material first becomes plastic (or else breaks) at the centre
of the cross-section, the strength of the test-piece diminishing as P increases, but
having no definite value. That some such thing as this does really occur in practice
is very well shown by the results published by Uxwin (‘ The Testing of Materials of
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Construction’), where blocks show less strength when three sheets of lead are
introduced between the compressing planes and the test piece than when one sheet
only is introduced, the lateral flow being greater in the first case owing to the larger
amount of lead.

Tt would seem, therefore, as if the true strength of a cylinder were really greater
than its strength as tested either between millboards or between lead sheets, and
not, as Professor PERRY states in his ¢ Applied Mechanics, equal to the strength
shown in the lead test—this test, as we see, leading to results that are not definite,
but vary with the expansion of the lead. The millboard test, however, which is
advocated by UNwin, should give a constant value, although it is not the value which
would hold for a cylinder under uniform pressure.

(d.) Diagrams 12-14 suggest an explanation of the fact that, when short cylinders
are strongly compressed between very hard surfaces, pieces are sometimes cut out at
the ends of an approximately conical shape. The same occurs when spherical pieces
of metal, such as ball-bearings, are compressed between parallel plates. This is usually
explained by saying that the material breaks along the planes of principal shear. On
the other hand, it may be argued simply that rupture should take place over the
regions of greatest stress. These are near the perimeter at the ends, and gradually
cloge in upon the centre, forming hollow caps.

Further, in the case of the lead tests, where P > Q, this state of things is
reversed, and the material should give way from the inside, so that we should expect
it to split axially, and possibly along meridian planes as well. That this is what
really occurs can be verified by referring to the figures in the chapter on testing of
stone in UNwIN's ‘ Testing of Materials of Construction.’

(e.) The results both of this and of the first problem show us how unreliable any
experiments on short cylinders must be, which have in view the determination, by
tensile strain, of either Youna’s modulus or Porssox’s ratio. Thus any results
obtained in such a case without the dimensions and the mode of application of the
stress being exactly specified, would not justify us in general in drawing any
conclusions as to whether a given material possesses or not uniconstant isotropy.

§ 28. The Third Problem. Case of Torsion. Fxpressions for the
Displacement and Stresses.

T now proceed to consider a case where u and w are zero, that is, where we have
to deal with the solution in v, which we have seen is independent of the others.
We have in the notation of § 3

(9 + D) v =0.

Hence, excluding K-functions, since the solution must be finite and continuous at
the origin, we have

=3 (A, sinkz + B, coskz) I, (k).
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Now, if the torsion be symmetrical on either side of the mid-section, we have
v == 0, when z = 0, therefore

B,=0.
But also g;, == Iu% = 0 at the ends.
Therefore cos ke = 0 or ke = In+417/2.
Also
( %
m‘) = pr- %Z} <) SpA, sin bz L If )

= SpA, sin Lz T, (Ir) .

By the well-known property of the I-functions

a ( L@ _ L ()
dv \ an - ot ‘

Now suppoge that the eylinder is subjected to a certain system of transverse

Py
surface shears, so that r¢ can be expanded in a Fourier’'s series in the form

~ ®, In K+\17r”
(1), = %,(‘,, §in -~ 5
Then 7 pk AT, (2) =
or Cu 7].
A ple Ty ()
Hence
(p) . S + Lo
_ & & Lip) “h o AT 2
@__%‘,/d T (o) sin 7an U RPN (127),
L(p) . 9n+1
b — % Aalp) o2 A :
re = % e, 1 () Sin o (128),
L(p) n+41
T s, 1P an + Lz 90
Pz = 20 N T (129),

where p « have the same meanings as befove, viz., kr, ka.

In the case where a/c is very small, or the cylinder is very long relatively to its
diameter, we may obtain a first approximation by retaining only the first terms in the
expression for the I's, Proceeding as in § 6, we find
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4r = ¢, . \.
v=—: 3 —=gsin kz 3
wt o kA l
S e
r¢ = — 3 ¢,81nkz Lo (180).
a” o ’ )
fr T ¢, |
i ==3 -chos ke
. ~
Now if (7)) =1y (2),

we see that

J)\z = (47‘/@){2([; (2) dz,

pe 2 _‘wdzﬁ\// () dz.

o oparly
Now if M be the total torsion moment up to any cross-section,
- o ¢
M= 27raj~§ ¥ (z) dz,

—~ I

p= -
(,S Tt
v/r = angle turned through by a radius = 6 say.

Therefore = ‘( Mdz ,

de . .
— = torsion at the pomnt = 7.

(224

o 9M
Theretore =
Tl
" et —~
Therefore M=p X = X 7and ¢z = pr7.

But these are the actual formule connecting the torsion with the applied couple
and with the shear across the section for a circular cylinder.

‘We see, then, that the usual formula continue to hold, to the first approximation,
when the forces applied to the surface of the cylinder vary with z, provided we define
our torsion-couple at any section (much as the bending moment at any section of a
beam is defined), as the couple of all the external applied forces to one side of that
cross-section.

It is interesting to note also that, to this approximation, there is no distortion ot
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the cross-sections, v/ being constant for the section. Straight radii therefore remain
straight radii,

Further, 7 = (r*/a?) (its value at the boundary).

In other words, the transverse shearing-stress across cylinders coaxial with the
given one is zero for sections where there is no such external applied stress, and
for other sections diminishes rapidly along the radius as we go inwards, so that near

the centre it is always small compared with &2

There is one very important point to be noted with regard to this method ot
approximation : p and « increase with u, and therefore, however small a/c may be, so
long as it remains finite, we still reach a value of #, for which it is not justifiable to
take for I and I, the first terms of their expansions in positive integral powers of the
argument. 1f;, however, we stop at the »th term, where v is finite, then if' I}, is the
remainder atter » terms of the series

T
= L(p) 20 + 1wz
20 f Ty O T g,

, for example,

and if, on the other hand, the numerical value of the difference i l L (p) < eforall

/(. ((Z)
values of » not greater than », where e is a quantity which depends upon ¢/a, and
which can be made as small as we please by making ¢/ small enough, then the
difference
/ .
L (p) S 2 + 171'/ 2 ' 4) 29 + 1wz

coS

20"I() 2¢ o koa? - 2e

must be numerically less than

IR,| + |R,| + ve,

where || denotes the numerical value or modulus of w, and I, is the remainder after
v terms of the series

& o dr Zn + 1

s Ty

Now it both the original series and the approximate series are uniformly
convergent, then by giving v a certain value, |R,| and |R,’| can both be made less
thaw a certain small quantity /3 which tends to zero when » tends to infinity, and
that for all values of z.

Now make ¢/a so small that e < /8», which we can always do so long as v is finite.
Then the difference between the two series is numerically < 7, and the approximation
holds.

If, however, for any value of z, it becomes unposuble to assign an upper limit to
R, or R/, v.e., if eithev series cease to be uniformly converwe,nt then we should have
to increase v mdeﬁmtcly in order to make | R

herefore to modify e, so
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that no limiting value of ¢/a (which should, of-course,; be independent -of z) could be
found, and the approximation need not necessarily hold. = As a matter of fact, it is
shown in § 29 to fail for particular cases. This is true d fortiori, if either series.cease
to be convergent at all.

The same remarks apply in their entuety to the process of approximation glven n
§ 6, and further, to the cmpproxmlate expressions given by Professor POCHHAMMER in
his investigation on the bending of beams (“ Crelle, vol. 81).

§ 29. Special Case of Two Discontinuous Rings of Shear.
Suppose that we have the fo]].owing syétem of values for ;Sa,\z — |
$4 =Tif ¢ — e <z <,
3;4: Oit —c+e <z <c—e,
b= —Tif —c<z< — ¢+ e

so that we have a cylinder twisted by two equal and opposite rings of transverse
shear extending over lengths e of the cylinder, near the ends. Then we find

easily
T Ap e (@n+ Dymre
o= @n + Dyrs 1) sin 2

with the following values of the displacements and stresses :

§ _ 8Te (= 1) 1(P) 277» Flme . 2m41me |
v w2t 1y L™ 2 o0 %
- 4T Asp) o 20 A lme . S lme .. . . (131).
T¢ E(Zn-i—l)’n' ( ) I() % S %
4T Lp) RS m+1
b2 S n 1 p n + 1 e n Ui
¢ % n -+ 1)77' ( ) I( ) % COS % |

Now it is easy to see that in this case the conditions for uniform convergency are

satisfied, except at the boundary, and except with regard to the stress 7/-?1), whose
approximate expression is not uniformly convergent, being in fact discontinuous for
=+ (c—e).
At the boundary, I, («)/I,(«) tends to unity with =, its approximate expression,
when « is large, being

he) 8 1 15
ly =l F st gate - . (132)

Hence v is always uniformly convergent and its approximate expression likewise, so
for it the approximation, for sufficiently small values of c/a, holds throughout.
VOL, CXCVIIL—A, 2 a
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226 MR. L. N. G. FILON ON THE ELASTIC EQUILIBRIUM OF

For 7/:(;5 the series is non-uniformly convergent for » == « in the neighbeurhood of the
sections z = 4= (¢ — ¢) owing to the series having a finite discontinuity. For q;; the
approximation certainly fails, for » = «, in the neighbourhood of z == 4- (¢ - ¢) for
part of the expression for d;; is the series% 1/(2n + 1), which 1s divergent.

Hence, it we are in such a case to use our approximations for the stresses, we must
exclude the sections where the applied stress is discontinuous and their immediate
neighbourhood from consideration.

It will be found that similar remarks apply to the example of pull given in § 7,
and also to the example given by Professor PocHHAMMER in his paper on bending (loc.
eit.), in which he also deals with discontinuous systems of stress, so that his approxi-
mate expressions leave us in the dark as to what does really happen at points of
support, the cross-sections in the neighbourhood of such points being, for reasons
analogous to those developed above, excluded from the regions where his approxima-
tions hold.

Before proceeding to an actual numerical concrete case, we may notice that J)\z
becomes infinite at the points z = 4 (¢ — ¢) for the causes stated above. Hence any
discontinuity in a system of transverse shears applied to the surface of a cylinder, or
any such shear transmitted by a grip applied to a portion of the material projecting
at a sharp angle, will produce in the neighbourhood a very great stress across the
section. It would seem, therefore, that a cylinder treated in this way would be likely
to experience plastic flow, or to rupture, not in the middle, but near the points where
it 1s seized.

§ 30. Approximations on the Boundory when the Cylinder is short.

When the cylinder is short, so that « becomes rapidly large, we may use the
method employed in §§ 8, 9, and 19, availing ourselves of the approximation (132).
We then find :(—

1,=4T0{%<1~2—6\>10g5

2 ,
T c

T z+ ¢ ' ™ v+ e
== o et (1= 7))

4 {1 f(“z—?’) j’_;(l_a;}e)
2

x cosec & dx — %

2 )
p 0

T
+ & j-; ez (from z =0 toz=1¢ — ¢)

and

ez —%(z—c+ef (fromz=c¢—etoz—c)
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T 1 1 2+ 1 I+l
¢ ® " . _’{1:-]" me . lev+ me
+ 15,7;2%(_ ) <(2n+1)"* + +1)5> 2. M T
8Tc = (—1) [T,(x) 515 15 . 9n+l S+l
R -1y ) __;5 — 1o ___.‘?_ @ an+lme . an+ 1wz 1383
o> @t 1) {L,(a) =9 — s 8«”} sin =5 sin e, L (188),
tan (T — TE= 0\ ‘ﬁe(fl*om,nz-_:otoz:c—e) h
~ T 4 4 ¢ g'n".l _
z = —log, 4+ 2°"| and
T (T mEdtoe ¢
gtan (‘; ~ 1 . > o2 (fromz=c—etoz = c)h
Te 1 1 . (2n 4 Dyme 2/L + 1oz
2( <(2n Tt e 1)> 9. Ty
LA (< ) 3 B 1)) " 9 + 1 o %+ + 1w L84
m o (2n 4+ 1\ (rx) 2« 8a® 84 2¢ ( )

where in the last  in both equations only a comparatively small number of terms
need_be taken.

§ 31. Numerical Fuample. Values of the Coefficients and of the Displacement
and Stresses.

Take a cylinder such that wa/2¢ = 1, and let ¢ = ¢/2, so that the distribution ot
stress is as shown in fig. 4. Then a == 2n 4 1, and we find :

4,/2T . . . . .
v= A;/T—g—c(wo sin z/2¢ — v, sin 37w2/2¢ — v, 8in 572/2¢ + vy sin T72/2¢ + v, sin 97rz/2¢

— vy8in 1lwz/2¢ — . . )
?5 = (tysinaz/2¢ — ¢, 8in 8m2/2¢ — . . )

T
Pz = 2‘{7.2 (3, cos wz/2¢ — s, cos Bwz/2¢ — . . .)

the law of the signs being obvious, and the v’s, ¢’s, and §'s being given below :

2 ¢ 2
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Spe
7 = *2a. 7 = *4q. 7 = *6a. 7= . P = 2. 7 o= *4a. 7 = *6a. 7= (.
0 +036956 +149306 +341554 1000000 || 740348 502982 | 2-310929 | 4-163295
1 +006884 +030078 +078098 333333 || 046574 106104 +1955562 *586933
2 +001551 007871 +025651 +200000 || -006457 +018173 +045167 978032
3 +000331 +002073 *009064 -142857 || +001021 003803 *013485 179752
4 -000068 +000547 +003339 *111111 || -000169 -000813 +004522 +132502
5 +000013 +000145 -001266 +090909 || 000029 +000212 *001619 +104848
6 +000003 +000039 +000492 +076923 || +000005 -000053 +000604: +086720
7 -000001 -000011 +000195 +066667 || 000001 +000014 *000232 -073927
8 +000000 +000003 +000078 +058824 || 000000 +000004 +000091 +064419
9 + 000000 +000001 +000032 +052632 || -000000 +000001 -000036 +057075
Fig. 4.
/ jﬁf Y
- C\
b - - 7(/'2_):.\ S & - f);-(wf}/g- R
L |
[} !
1 , i
N i
' & t
1 i !
| ' i
1 ! i
| ! !
; ! i
\ Lo -,
\¢17v /
TABLE of v,
= *2a. r = *4a. 7 = 6a. 7= .
+740348 1-502982 2:310929 4-163295
+015525 +035368 -065184 +195644
+001291 003635 +009033 +055606
+000146 ©+000543 +001926 025679
+000019 +000097 -000502 -014722
+000003 +000019 +000147 +009532
+000000 +000004 +000046 +006671
+000000 +000001 -000015 +004928
+ 000000 +000000 +000005 -003789
+000000 +000000 -000002 + 003004

From these, using the formule of approximation given in the last section, when
7 = a, we obtain the values of v and the two stresses.
form v/v, and (stress) /T, where v, 1) are the greatest values of the displacement and
of the shear respectively in a cylinder of the same length, subject to a uniform

I have tabulated them in the
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torsion over its whole length, the total couple applied being the same as in the
present case. We find Ty = pra = T and v, = rca = wcT/u for the given example.

Tables are given on page 229.

Looking at these tables we see that, over the length free from external applied
shear, the strains and stresses inside the cylinder are sensibly the same as what they
would be on the hypothesis of a uniform torsion. Outside z/¢ = *5 the torsion couple
diminishes, and the stresses diminish in consequence.

It is interesting to compare these vesults with those that we should have obtained
if we had supposed the approximate results given on p. 223 to hold good in this

o~ e~
case. Denoting by v, 7¢’, ¢z’ the values of the displacement and stresses calculated
on this hypothesis, we have —

TasLe of »'/v,.

rfa. | zlc = 0.| *L ‘2. *3. 4. 5 6 ‘7. 8 9 1
0 0 0 0 0 0 0 0 0 0 0 0
‘2 0 *020 | ©040 | +080 | -080 | *100 | *118 | *132 | -142 | -148 | -150
4 0 *040 | 080 | 120 | -160 | -200 | 236 | '264 | 284 296 | -300
-6 0 -060 | -120 | -180 | -240 | +300 | -354 | -396 | *426 -444 | -450

1-0 0 100 | -200 | -300 | -400 | -500 | *590 | -660 | *710 740 | -750

TasLe of 7/"(\],6’/ T,

tja. zfe=0.1.1-2. 3. | -4 6. . 8. 9. 1.
0o 0 |0 0 00 0 0 0 0 0 0
, 0
2 0 007070 {~012732 012732 | 012732 | -012732 | -012732 | -012732
4! o Jojo oo {0
-050930 | 050930 | 050930 | -050930 | 050930 | -050930
. 0
6y 0 10,/0:070 {~114592 114592 | 114592 | 114592 | 114592 | 114502
_ 0
1o, 0 1070700 {'318310 318310 | -318310 | -318310 | -318310 | -318310
Tasre of ¢2//T,.
rja. | zjc = 0. -1 -2 -3. 4. -5, 6 7. -8. -9, 1
0 0 0 0 0 0 o | o | o | o | 0o | o
2 | 20 | 20| 20 | -20 | 20 | -20 |16 |12 | -08 |04 0
4| 40 | 40 | <40 | 40 | 40 | 40 |32 | -24 |16 | -08 | O
6 | 60 | 60 | 60 | <60 | 60 | 60 |48 | 36 | -24 |12 | 0
10 | 1-00 | 1:00 | 1-00 | 1-00 | 1-00 | 1-00 | ‘80 | ‘60 | ‘40 | 20 | 0
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§ 82. Discussion of the Results.

From the above tables we see that the radii in each cross-section do not remain
straight lines, but assume distorted shapes, which are shown, on a very exaggerated
scale, on Diagram 16, where, for each of the ten cross-sections, the curve ot
(v — v')/v,, which indicates the deviation from the straight line in the distorted
torm of the radii, has been plotted. The variation from the straight line increases
rapidly as we approach the region where the stress is applied, as can be seen from
curves (1)—(4) on Diagram 16. On the other hand, towards the ends, the distortion
remains fairly constant. The distorted radii meet the bounding circles at right

angles when 7/@ = 0 at the surface, but they meet it at a finite angle where
@ =T

From the values of ;S; and 7,:/) we see that as soon as we get at all away from the

—_~

ends the conditions that r¢ = 0, :{)\z = pr2, v = 77z, which hold for uniform torsion,
are very closely satisfied, and that, more generally, except where the abrupt change
takes place in the shearing stress at the surface, the approximate expressions given

in § 28 do not differ widely from the true expressions, the law that ﬁ) varies as
the square of the radius being, near the ends, tolerably well verified. It is to be

noted also that, where the approximations would give a discontinuity in @ wnside the
material (viz. at z = ‘5¢), the true values are almost exactly the mean of the two
discontinuous values obtained from the approximate formule assumed correct.

— —~ .
In like manner ¢z is nearly the same as ¢z’, except near z = *5¢, where, as we have
seen, an infinite stress really occurs, of which the approximations give no hint.

We note, however, that ;';7\ does not strictly vary as » all over the section, being
smaller than should be expected inside and larger at the boundary.

The theoretical result, that the stress is infinite where the transverse applied shear
is discontinuous, throws much light on the case of a cylinder whose cross-section
abruptly changes, as in fig. 1, with the difference that now the stress applied to the
collar is transverse. We see that in such a case we should expect the material to
give way at the points of sudden change. This conclusion is in accordance with
practical experience, the tail ends of propeller shafts, for instance, breaking almost
invariably in this manner. ‘

§ 33. General Conclusion.

This example concludes the series of three which it was proposed to treat of. The
object has been to obtain a clear idea of the effects of certain surface distributions of
stress which come much nearer to the cases arising in practice than does the uniform
distribution ordinarily taken.
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Diagram 16.—Showing Distortion of a Radins originally Straight in the case of Torsion produced by
applying Shearing Stress to the Curved Surface.
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The curve corresponding to the section 2/¢ = /10 is numbered n. The first four curves have had the
ordinates exaggerated in the ratio of 10:1. They are shown by the dotted lines, and to them refer the

numbers in brackets.
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No doubt the cases treated involve somewhat arbitrary conditions, not strictly
obtained in practice, but it appeared useful to ascertain how far they gave results
diverging from those which would be found on the ordinary hypothesis of uniform
extension or torsion.

This furnishes us with a test of how far we may accept DE SAINT-VENANTS
principle of “equipollent” systems of load for a bar whose length is gradually made
smaller compared with its diameter. The results we have here obtained indicate
that, as we go away from the points of application of the stress, a “ uniform ” solution
is reached much sooner in the case of torsion than in that of either tension or
pressure.

With regard to the arithmetic of the paper, the results have been as far as possible
checked. It is believed that they are correct to the number of figures given, but
owing to the slow convergence of certain of the series, accumulated errors may in
some cases affect the last and even the second last figure. KEven this, however, would
not sensibly disturb the conclusions.

For the I-functions the tables in GraY and MaTHEW'S ¢ Bessel's Functions ” were
used, but the range of the tables is so limited that a large number of these functions
had to be independently calculated. The semi-convergent expansions were employed,
the argument being large in each case. ,

My very best thanks are due to Professor Ewine for his unfailing kindness in
coming to my aid with suggestions and advice.
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